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Page 64: In the FORTRAN notation in a write statement 14 lines from the bottom of the 
page, H should be changed to AH. The corrected notation would be as 
follows : 

WRITE (6,126)DTTI,DTTF,DTWI,DTWF,RMIN,AH 

Page 68: Insert the following statements after FORTRAN statement 402 (before 8th line 
from bottom of page): 

C TEST FOR ZERO VALUED DENOMINATOR 
CKDEN=RHOl*COS(TH 1) -RHO2*COS(TH2) 
IF(CKDEN.GE. 1. OE - 10)410,405 

410 CONTINUE 

Page 70: Insert the following statements after FORTRAN statement 602 (after 7th line 
from top of page): 

C TEST FOR ZERO VALUED DENOMINATOR 
CKDEN=RHOl*COS(THl) -RHOB*COS(THB) 
IF(CKDEN.GE. 1. OE - 10)6 14,604 

614 CONTINUE 

Page 72: The absolute value of iI and i should be used in Subroutine Six which evalu- 
ates the transformation matrix. Therefore, the second statement on page 72 
should be deleted and replaced by the following two statements: 

RAII=AII 
CALL SIX(A11 ,A1 2, A2 1,A22,A3 1 ,A32,OMI, OMEGAI,RAII) 

Also, the present one-line FORTRAN statement 900 should be deleted and 
replaced by the following two statements: 

900 RBI=BI 
CALL SlX( B11, B12, B21, B22, B3 1, B32,OM,OMEGA,RBI) 
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Page 78: Add the following statement between lines 1 and 2: 

U3 =ABS(U3) 

Page 83 (table m): Under the heading DVlZ (12th column), delete the minus signs 
before the first six numbers and insert minus signs before the last nine 
numbers; under the heading DV2Z (15th column), insert  minus signs 
before all fifteen numbers. 
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A COMPUTATIONAL METHOD FOR TWO-IMPULSE ORBITAL 

RENDEZVOUS AND TRANSFER PROBLEMS 

By Robert L. Collins and Sylvia A. Wallace 
Langley Research Center 

SUMMARY 

A detailed derivation of exact equations and an associated computer program with 
which the basic parameters involved in transfer or rendezvous between two arbitrary 
elliptic orbits may be calculated are presented. The computations are exact in the sense 
that the Kepler solutions for bodies orbiting in a point-gravity field a re  used. This 
method deviates from the f*classicalff approach based on the theorem of Lambert, inas- 
much as it uses the true anomaly and the Kepler equations for iterating to  the desired 
rendezvous transfer time. The method has a unique feature in that definite boundaries, 
dependent on the problem input, a r e  used which limit the range of the true anomaly, and 
thereby reduce the search effort required in the iteration procedure. The program pro- 
vides for a solution to problems where the transfer angle is less than 360'. Examples 
are given for three particular uses of the program: (1) interplanetary transfer between 
massless planets, (2) near-planet orbit rendezvous, and (3) orbital transfer. 

INTRODUCTION 

It seems appropriate to provide a useful technique for  the computation of velocity 
increments and other important parameters involved in the problems of orbital rendezvous 
and transfer by use of the solution to the exact equations of motion. Various programs 
and techniques exist at this time; however, they a r e  either unpublished or  are not of a 
sufficiently general nature to  be used in the variety of orbital problems one might desire. 
(For instance, see refs.  1 to 4.) It is desirable, therefore, to have a simple and yet gen- 
eral  computational method which will solve the problems of: (a) interplanetary transfer 
between massless planets, (b) planet orbit rendezvous, and (c) orbital transfer. The pur- 
pose of this paper is to  give the description of the analysis required for the solution of 
the rendezvous problem from the exact Keplerian relations. The fundamental problem is 
that of determining the velocity increment required to rendezvous from some initial inter- 
ceptor orbit to some final target orbit as a function of transfer time. Also determined are 
eccentricity, semi-major axis, initial and final anomalies, and other parameters associ- 
ated with the transfer orbit. Although the problem, as stated, is a rendezvous problem, it 



is also possible to  interpret the results for use in studying the orbital transfer problem. 
It is assumed that the Keplerian orbital quantities are known in advance for the target 
vehicle and that the initial interceptor orbit is known either from its Keplerian orbital 
elements or from relative coordinate data. The coordinates chosen a r e  referenced to  the 
target orbit, and another axis transformation will be necessary if the user  desires the 
results and input referenced to some other axis system (such as the ecliptic). Figures 1, 
2, and 3 show the coordinates and position symbols used to  describe the orbits and fig- 
ures  4 and 5 show the (input) information needed on the position of the orbits. 

A solution to  the rendezvous problem may be obtained by specifying the transfer 
time for the interceptor t o  travel from its initial orbit to its final (target) orbit which, 
along with the initial conditions of the problem, gives the initial and final positions in 
space through which the interceptor must pass. The transfer orbit must then be found 
which passes through the known initial and f inal  positions. An iteration is required for 
this calculation inasmuch as the transfer orbit which will yield the proper transfer time 
is not yet known. The procedure begins by choosing some orbit which passes through the 
initial and final position vectors and then the corresponding transfer time is computed 
and compared with the real (desired) transfer time. If the computed transfer time is not 
the same as the desired time, another orbit must be chosen and the time again computed 
and compared. This process is repeated until the conic section which provides the true 
rendezvous transfer orbit is found. 

There a r e  (at least) two methods which have been used for this iteration. The solu- 
tion by use of Lambert's theorem was used by Battin (ref. 1) and Breakwell (ref. 2). How- 
ever, iteration of the true anomaly, as was considered by Lascody (ref. 3), is more read- 
ily visualized since it does not require such artificial devices as "flattening" the transfer 
orbit used in geometrically describing the transfer problem deduced from the theorem of 
Lambert (ref. 1). It is also possible to find definite regions within which the true anomaly 
must be chosen and therefore shorten computational (convergence) time to the extent that 
a direct search routine may be used in the iteration; this routine does not involve the 
derivatives necessary in the method of iteration as presented in reference 3. 

In programing this problem, an effort has been made to  provide a sufficiently gen- 
eral program with a minimum amount of difficulty in reading input and printing output 
information for the particular problem. For instance, problem input information may be 
provided in two fundamentally different ways: (1) as Keplerian data (eccentricity, semi- 
major axis, longitude of ascending node, etc.) and (2) as relative coordinate input refer- 
enced to  rectangular coordinate axes fixed with the target vehicle. 
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SYMBOLS 

Unless otherwise noted all quantities are nondimensional. The nondimensional 
forms are derived as follows: 

Dimensional length Nondimensional length = 
Semi-major axis of target orbit, aT 

Dimensional velocity Nondimensional velocity = 
Mean circular velocity of target, VCT 

Target orbital period, PT 
27T 

Nondimensional angular rate = (Dimensional angular rate) X 

Dimensional time 
Target orbital period, PT 

Nondimensional time = 

a 

a.. 
1J 

bij 

C 

e 

E 

F 

F1'F2 

h 

H 

i 
A *  A 

i ,j  ,k 
* A *  

i' ,j ' ,k' 
A A  A 

I,J,K 

semi-major axis of orbit 

element of transformation matrix, x,y,z to  X,Y,Z 

element of transformation matrix, x',y',z' to  X,Y,Z 

chord joining p1 t o  pa 

eccentricity of orbit 

eccentric anomaly of vehicle in orbit 

functional relationship 

equivalent eccentric anomalies for hyperbolic orbit 

increment for iteration 

angular momentum 

inclination of orbital plane to  target orbit plane 

unit vectors along x,y,z; xft,yfl,zf' axes as indicated 

unit vectors along x' ,y' ,z' axes 

unit vectors along X,Y,Z axes 
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M mean anomaly 

P semi-latus rectum 

target orbital period, pT 

r radial distance to  target 

i',(X) ,i'f(Y) ,i'f(Z) 

t time 

velocity components after f ina l  impulse 

time at observation of input 

time of initial impulse 

time of f inal  impulse 

wait time before in i te l  impulse, ti - to 

ti 

tf 

AtW 

At interceptor transfer time, tf - ti 

computed times from periapse when the interceptor is at p1 and p a  in 
transfer orbit 

T1'T2 

AT computed transfer time, T2 - T1, for comparison 

V speed 

mean circular speed of target orbit, 'CT 

V ~ X ~ , ~ ~ Y ) , V ( Z )  velocity components along X,Y ,Z coordinate axes 

AV(X),AV(Y),AV( Z) velocity increment components 

AVi,AVf 

AV total velocity impulse 

XYY YZ 

x',y',z' 

x" , Y ' ~ , Z ~ ?  

initial velocity impulse; f inal velocity impulse 

coordinates fixed to  interceptor initial orbit (inertial) 

coordinates fixed to interceptor transfer orbit (inertial) 

coordinates fixed to target vehicle (rotating) 
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coordinates fixed to  

auxiliary quantities 

tar get orbit (inertial) 

constant determining hyperbolic or elliptic computation 

transfer angle 

true anomaly of interceptor in transfer orbit 

increment of el 

increment in transfer time 

increment in wait time 

increment in true anomaly of interceptor in initial orbit 

gravitational constant, ft3/sec2 

t rue anomaly of interceptor in initial orbit 

radial distance to  interceptor in initial orbit 

gi(x) ,Ei(y),Ei(z) 

P 

j(x'),j(y'),fi(z') 

@ true anomaly of target 

+ auxiliary angle 

w 

s-2 

Subscripts : 

C circular orbits 

f f i na l  time t = tf 

i initial time t = ti unless specified differently 

I initial interceptor orbit 

velocity components of interceptor immediately before initial impulse 

radial distance to  interceptor in target orbit 

velocity components of interceptor in transfer orbit 

longitude of periapsis measured from node in plane in question 

longitude of ascending node measured in target plane 
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I 

arbitrary index 

observation time t = to 

parabolic orbit 

target orbit 

wait time 

used to distinguish between the two terminal vectors in transfer orbit 
iterations 

used to indicate vector components along indicated Cartesian coordinates 

indicates velocity components immediately before and after initial (1,2) and 
final (3,4) impulses 

used to indicate vector components along X,Y,Z coordinate axes 

Nonsubscripted Keplerian orbital parameters refer to  the transfer orbit. Dots over 
symbols denote derivatives with respect to time; a caret (^) over a symbol denotes 
vector quantities. 

DISCUSSION OF ANALYSIS 

The coordinate systems are chosen with the target orbit plane as the reference 
plane, the periapsis of the target defining the reference position vector in space. 

Orbital trace of target 

Fig- 
ure 1 is presented to emphasize the 
parameters involved in describing 
the target orbit and the target vehi- 
cle. The target vehicle radius is 
denoted by r and its true anom- 
aly by @. Input is given to define 
the geometry of the target orbit 
eT, aT and the true anomaly of 
the target vehicle $o at time 
t = to. The coordinate system 
X, Y, and Z is defined with X 
piercing the target orbit periapse, 

tion vector of the target, and Y 
completing a right-handed triad. 

periopse 
Target 

t-= t i  Z pointing along the positive rota- 
X 

Figure 1.- Target satellite orbit and associated quantities. 
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Unless otherwise noted, the quantities in this study a r e  all nondimensional for gen- 
erality. This condition allows the deletion of two parameters p,  and aT from the per- 
tinent equations. The semi-major axis aT is not needed when dimensionless quantities 
a r e  considered inasmuch as it is used for the normalizing and is only necessary when 
certain dimensional information is required. Neither is the central-body gravitational 
constant p required for dimensionless studies but must be used if the times a re  
required to  be dimensional (minutes, days). 

The parameters required to describe the initial interceptor plane are shown in fig- 
ure  2. These parameters are the usual Keplerian elements describing the initial plane 
and the periapse position of the interceptor orbit a1, wI, iI and the geometrical ele- 
ments of the interceptor ellipse eI, aI. The position vector of the interceptor in the 
initial interceptor orbit is given 
by the magnitude 5 and the true 
anomaly v. The coordinates 
x, y, and z a re  also defined Z 

in this system; x being 
directed through the periapse, 
z perpendicular to the orbital 
plane (see fig. 2), and y com- 
pleting a right-handed triad. 

f '  

It is not necessary to 
specify the six parameters for 
the interceptor position in the 
Keplerianform nI, wI, iI, 
eI, aI, and v as the program 
provides an alternate form for 
this input. The position and 

and 2;) of the interceptor rela- 
tive to the target at time t = to 
may be used in place of the 
Keplerian parameters. (See 
fig. 5.) A derivation of the rela- 
tionship between these param- 
eters is given in appendix A. 

Figure 2.- Plane of initial interceptor orbit and associated quantities. 

0) 

Plane of interceptor 
transfer orbi t 

t Z  

velocity x;, y;, z;, 2;, $'A, Interceptor initial 

Periapse of interceptor 

The transfer orbit plane is 
specified entirely by the geom- 
etry of the initial and f inal  posi- 
tion vectors of the interceptor. 

V X' 

Figure 3.- Interceptor transfer orbit and associated quantities. 

7 



(See fig. 3.) The time for the initial impulse is denoted by t = $ and the final impulse 
t = 4. The quantities Go and vo are the true anomalies of the target and interceptor 
at some time t = to but the initial impulse may not come until some time later $; 
thus, another quantity is introduced, the wait time A& where A& = - to. It is then 
clear that the transfer time At is At  = 9 - \. The initial position vector ii is deter- 
mined by the orbital quantities and the wait time eI, aI, QI, iI, wI, vo, and A t ,  

or the relative coordinate data 

h$pb initial 

2% 
@@- 

2"" I Interceptor initial 
orbit periopse 

Target Intekptor initial orbit 
X '0 ascending node 

Figure 4.- Quantities required for Keplerian input to program (DATAS = 1.0). 

Figure 5.- Quantities required for relative coordinate input to program 
(DATAS = 2.0). 

orbit 

Atw. To determine the final posi- 
tion vector FfY the position vec- 
tor  of the target at t = tf, the 
quantities eTy Go, and Atw + At 
are needed. The total time from 
to to 4 is the sum of the wait 
time and the transfer time. 

The initial position vector 

ti is determined by first com- 
puting the eccentric anomaly EIo 
at t = to of the interceptor in 
its initial orbit from the equation 

L. 

tan-= - tan 2 (1) 
2 

The mean anomaly at t = to is 
found directly from Kepler's 
equation as 

MIo = EIo - eI s i n  

and at t = ti the mean 
will be ME where 

The eccentric anomaly 

EIo ( 2) 

anomaly 

A& (3) 

En at 
t = ti is found from iteration of 
the Kepler equation as described 
in reference 5. 

a 



MIi = E + eI sin EIi Ii (4) 

After obtaining EIi from equation (4), the true anomaly vi may be found from 

After the true anomaly of the interceptor vi preceding the first impulse is found, 
the radius vector magnitude is obtained from the well-known solution 

- e12) 
'i = 1 + e cos vi I 

The rates may be easily computed from the relations 

and 

e sin vi ii = I 

The initial vector zi written in the x,y,z coordinate system (fig. 2) becomes 

'> gi = tI(cos vii r + sin vi] 

The final position vector is determined from the initial conditions eT and +o 
along with the elapsed time Atw + At in the same manner as the initial position vector. 
These computations are shown in appendix B. By repeating these steps for the target 
vehicle at t = tf the true anomaly $f may be obtained and may be used to find the 
final radius vector written in the X,Y,Z system as 

where 

1 - eT2 

1 + eT cos $f 
r =  

f 
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Also 

eT sin +f 
2 

f1 - eT 

Cf = 

The interceptor velocity immediately preceding the initial impulse at t = is 
obtained from 

and after the final impulse the interceptor velocity must be the same as that of the target 
or 

I* ( if = Pf cos +f - rf$f sin +f I + kf sin +f + rfcjf cos Of>” 

The transfer orbital plane and some of the properties of the transfer orbit are found 
by noting that the interceptor must leave vector gi at time ti and arr ive at vector 1, 
at time tf. Since gi and 1, are known, the transfer plane properties and the transfer 
angle A0 may be determined. 

In equations (8 )  and (9), gi was specified in te rms  of its components in the x,y,z 
coordinate system whereas ;f was specified in the X,Y,Z system. In order to  manip- 
ulate with these vectors, their components must be referenced to the same coordinate 
system. The target coordinate system X,Y,Z is used here s o  that the vector zi must 
be transformed. This transformation can be accomplished by the common Euler angle 
matrix. The elements of this matrix a r e  dependent upon the angles sZI, oI, and iI and 
a r e  given in appendix B. The matrix will here be simply noted as a.. . Then ti is 
written with components in X,Y,Z as [ 131 

or letting 

A * . A  tJI,J,k) = ti(X)i + t i(Y)j + ti(Z)k 

10 



where ti(X), ti(Y), ti(Z) are functions of ti, vi, wi, ai, and iI and a r e  found 
from equation (15). These relations a r e  written out in appendix B (eqs. (B21)). 

With both gi and 1, in the X,Y,Z coordinate system, the transfer angle A8 
and the transfer-orbit plane inclination i may be derived from the vector identities 

A A  

ti rf = tirf cos A8 

where 

i;? = -sin i sin @fi + sin i cos @fi + cos ik 
A complete derivation of A8 and i is given in appendix B. 

The velocity components of equation (13) may also be transformed to  the X,Y,Z 
system 

(17) 
h A A A  $,w) = pijli(i,j ,k) 

which gives expressions for gi(X), $(Y), and &(Z) as shown in appendix B (eqs. (B44)). 

The problem now becomes one of finding an a r c  of a conic section which will pass 
through the initial vector Zi and the final vector 1f and which also has the property 
that a body traversing this a r c  will do s o  in the desired transfer time At. For future 
convenience, the following convention is defined: Let p1 be the minimum of rf and 

ti and p2 the maximum; then the transfer orbit must be the conic section passing 
through the radii p1 and pa, separated by an angle A8, in the time At.  

If an angle el  of periapse to  p1 is guessed, the eccentricity for the conic section 
which has radii p1 and p2 separated by A8 may be found from 

- 
'1 - 1 + e cos el  

P 
1 + e cos e2 P2 = 

where 

O 2  = + A8 

11 



and 

p = a(1- “2) 

from which p is eliminated to  find 

p2 - p1 e =  
COS el - p2 cos e2 

1 

The eccentric anomalies may also be computed from 

and the mean anomalies from 

M = E - e sin E 

The time of transfer for this particular choice of 
as 

is found from the mean anomalies 

The semi-major axis a is determined from e and el or e2 in equation (18c). 

transfer time At; therefore, it will be necessary to  assume a new value for el  and 
continue with this process until the desired agreement is obtained. 

The computed transfer time AT will not, in general, correspond to  the desired 

It is possible to find certain regions from which to choose and thereby shorten 
the iteration considerably. It is easy to see in which conic section the transfer orbit must 
be by computing the time required to  transfer by a parabolic orbit. This time may be 
determined without iteration by setting e = 1.0 and following the procedure outlined in 
appendix B. If this parabolic time ATp is less than the desired transfer time At, the 
orbit must be elliptic (e < 1.0) whereas if the parabolic time ATp is greater than the 
time At, the orbit must be hyperbolic (e > 1.0). The procedure is to find the type of 
orbit, hyperbolic or elliptic, and then set equal to the parabolic anomaly 0 plus or 
minus some increment &I1 so that lies in the hyperbolic or elliptic region, which- 
ever is appropriate. The size of this increment 6e1 is important in convergence of the 
iteration. It is governed by two other limiting values, one each for the elliptic and hyper- 
bolic regions. Then a straightforward incrementation process is used directly until the 
correct value of el  is found. A complete description of this process is found in 
appendix B. 

P 
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After the properties e, a, e l ,  Ae, p, 52, w, and i of the transfer orbit are 
found, the next step is to  compute the velocity increments required for the rendezvous. 
The velocities before the initial impulse and after the final impulse are given in equa- 
tions (17) and (14). The velocities after the initial impulse and before the final impulse 
are described in the transfer orbit. If 2, F, and G' are the unit vectors along the 
x',y' ,zl 
are written as 

coordinate axes previously defined in the transfer orbit system, these velocities 

These velocities are then transformed to the X,Y,Z system for ease of manipulation. 
This transformation is done by a matrix [bij] identical functionally to [aij] but with 
the transfer orbit angular parameters S2, w, and i replacing the parameters for the 
interceptor initial orbit aI, wI, and iI. After these transformations 
ments are easily found from 

the velocity incre- 

and the total velocity increment required becomes 

A thorough discussion of this method and the pertinent mathematics of the problem 
is found in appendix B. 

COMPUTER INPUT AND OUTPUT 

The problem was programed in the FORTRAN IV language for the IBM 7094 com- 
puter installation at Langley Research Center. Certain options were incorporated in the 
input of the program and are described. A more thorough description of the entire pro- 
gram is found in appendix C. It was felt that the present writeup is sufficient for most 
uses and if  changes are desired, they are easily incorporated through the FORTRAN IV 
language. 
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The program automatically increments the anomaly vo of the interceptor at 
t = to, the wait time in orbit Atw, and the transfer time At. The incrementation begins 
with At  or A& depending on the value of €he option control variable GUIDE in the 
input. The second parameter incremented is Atw or  At, whichever is not incremented 
first, and the third incrementation is vo. 

An option is also available for using the input and output times A t  and Atw as 
dimensional quantities. The input quantity OPTION determines whether the quantities 
At and Atw a r e  dimensionless o r  dimensioned as minutes or  as days. Because of the 
nondimensional parameters used in the program, the input p and aT may be any con- 
venient values as long as the time is dimensionless and and VCT a r e  not desired; 
otherwise, p and aT must be properly dimensioned. 

The input quantity DATAS determines whether the initial interceptor orbit data are 
Keplerian or relative Cartesian. 

PT 

Other necessary input quantities a r e  h, the increment constant for the ,gl itera- 
tion (in the examples solved a value of 3 was used), 
time incrementation for the time grid. Also, input is the quantity rmin which is the 
minimum radius the interceptor may take as it travels the transfer arc.  This value does 
not affect the computations in any way; however, if the radial distance of the transfer a r c  
falls below the value rmin, an asterisk is printed out at the right-hand side of the output 
sheet. 

6t and 6&, the transfer and wait 

The variables output in the program described herein were those which were con- 
sidered to be of general use. The output is printed as shown in tables I, 11, and III which 
are output data for the three examples following this discussion. The first block of data 
is a reprint of the input where the following correlation between symbols may be observed: 

Symbol 

ET 
E1 
AI 
OMEGA I 
OMI 
II 
PHI0 
NU01 
NUOL 
MU 
AT 
TPER 
VCT 
DTTI 
DTTF 
DTWI 
DTWF 
RMIN 
H 

~~ 
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Corresponding value 
~ 

eT 
e1 
a1 
"I 
WI 
iI 
$0 
vo (first) 
vo (last) 
!J 

+ (ft) 
pT (set) 
VCT (ft/sec) 
At (first) 
At (last) 
A& (first) 
AT,,, (last) 
r .  
h 
nun 

In the case that the input is in the form of relative 
coordinate data, these Keplerian quantities for the initial 
interceptor orbit are computed from the relative coordinate 
data as has been explained. An example of this printout is 
shown in table II where a fourth row of variables is noted and 
XO, YO, and ZO correspond to  x:, YE, and zz and 
XODT, YODT, and ZODT correspond to $E, i g ,  and 5;. 

After this output which records the data for the terminal 
orbits, the data a re  computed for  the rendezvous problem and 
the following description of the printout nomenclature should 
be noted: 



Symbol 

N U 0  
DELTTT 
DELTTW 
PHIF 
NUI 
E 
A 
I 
THI 
DELTTH 
RHOM 
DVlX 
DVlY 
DVlZ 
DV2X 
DV2Y 
DV2Z 
DELVl 
DELV2 
DELV 

Corresponding value 

VO 

A t W  

@f 

A t  

V i  
e 
a 
i 

o i  

Pmin 
Component of along f 
Component of ~9~ along 3 
Component of ~9~ along ik 
Component of ~9~ along f 
Component of  AI^^ along 3 
Component of ~ i 7 ~  along ii: 
Magnitude of AQi 
Magnitude of A q f  
Magnitude of AC 

A0 

EXAMPLES 

Example 1 - Interplanetary Transfer Between Massless Planets 

To compute velocity increments required for interplanetary trajectories the input 
for the planet ephemeris is needed. 
example, consider a t r ip  from Earth to Mars  which is to be accomplished by a two-impulse 
orbit. As the observation time to, January 4, 1964 (Julian date, 243-8398.5) is selected. 
From the 1964 ephemeris tables (pp. 18, 50, 172, 176), data for this problem a re  found 
which are referenced to the ecliptic plane. From the geometry of the ecliptic coordinate 
system (see refs. 1 and 2) and the definitions presented here, the following program input 
is determined: 

This input can be found from reference 6. As an 

eT = 0.093372 v0 = 0.37' 

= 7.4737 x 1011 S?,I = 253.88' aT 
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@o = 324.4' 

eI = 0.0167242 

wI = 233.02O 

iI = 1.850' 

aI = 0.656301 

In order to be notified in the output whether the transfer arc is less than 0.6 astro- 
nomical units, let rmin = 0.6aI. Also let 

1.1 = 4.679 x 1021 ft3/sec2 

h = 3.0 

then. 

rmin = 0.393781 

Since vo is not to be incremented (because it is fixed by the physics of the solar 
system), let vo (first), vo (last) be vo as shown and the increment 6vo = 0. Let it be 
desirable to collect data in increments of 20 days with transfer times from 160 to 260 days 
and waiting times of 0 to 40 days, and then use 

At(first) = 160.0 At(1ast) = 260.0 6t = 20.0 

A&(first) = 0.0 A%(last) = 40.0 6% = 20.0 

If the data a re  to be analyzed with At  as the primary independent variable and A t ,  as 
the parameter, At  is incremented first. Therefore, set GUIDE at 2.0. The times a re  
to  be input and output in days so  that OPTION is 3.0, and since Keplerian input is used, 
set DATAS as 1.0. Some output data a re  given in table I with time in days and all other 
quantities except 1.1, 9, PT, and VCT are nondimensional. 

Example 2 - Earth-Orbit Rendezvous 

There are many approximate schemes which have been derived and investigated for 
determining the velocity increments required to rendezvous between similar orbits. Such 
investigations have been mainly concerned with circular orbits or first-order representa- 
tions of elliptic orbits (near circular orbits). The simplest case of rendezvous with a 
circular target orbit (as done by Clohessy and Wiltshire, ref. 7) gives a closed-form solu- 
tion to  the linearized equations of motion for the velocity increment required to  rendezvous 
in a given amount of time. This linearized solution is accurate for the terminal phases of 
a general rendezvous problem but the accuracy is soon lost for large initial interceptor- 
target ranges. It should be noticed that even in the docking phase, this solution may not be 
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too accurate if the target orbit is highly eccentric. Further attempts to  increase the 
applicability of the Clohessy-Wiltshire results usually require an iteration scheme 
(Anthony and Sasaki, ref. 8) or some other process to get a solution of the velocity incre- 
ment required to rendezvous. 

It is noted that the solution of the exact equations presented herein is not too 
involved once a computer program is available, and, of course, offers the advantage of 
giving correct results for both large eccentricities and inclinations. 

As  an example of the use of this program for earth-orbit rendezvous, assume that 
the following elements are used for the target orbit: 

eT = 0.0234 

aT = 2.248 x lo7 f t  

Also let 

$lo = o.oo 

= 0.954 min 

p = 1.408 X 10l6 ft3/sec2 

h = 3.0 

The interceptor position and velocity are given in relative coordinates: 

X: = -0.01692 2; = -0.00376 

J$ = 0.0376 ?A = 0.1526 

i" = 0.0 z?? - - 0.0 
0 

Note that eI, aI, vo, iI, aI, and oI are computed from these relations. Let the time 
be input and output in minutes: 

At(first) = 2.0 At(1ast) = 40.0 6t = 10.0 

Atw(first) = 0.0 Atw(last) = 30.0 6tw = 10.0 

If a plot of A& as abscissa and At as a constant parameter is desired, set 
GUIDE at 1.0. Since Input time is in minutes, OPTION is 2.0, and since relative coor- 

dinate data are used, set DATAS at 2.0. 
output 

The output of the computer program for this input is given in table TI. 
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Example 3 - Transfer Orbits 

The problem of orbital transfer between two arbitrary elliptic orbits may also be 
accomplished by this computational procedure. The use of this method in orbital transfer 
problems is indicated in this example where the minimum two-impulse transfer orbit is 
desired between two fixed terminal orbits. The transfer orbit requiring minimum velocity 
increment may be found by proper interpretation of the data and the use of a plotter. The 
program as presented here does not have a gradient or  other optimization scheme to find 
the minimum velocity transfer directly. However, an example is shown of one way of 
obtaining the optimum (two-impulse) orbital transfer. 

For the terminal orbits the following input data a r e  used: 

eT = 0.5 aT = 1.0 (arbitrary) 

nI = 900 eI = 0.2 

iI = 30° aI = 0.9 

OI = -goo 

Also let 

rmin = 0.45 

h = 3.0 

,u = 1.0 (arbitrary) 

The true anomaly vo of the interceptor at t = to is chosen in the following range: 

vo(first) = 0.0 

vo(last) = 350° 

6vo = 100 

which is incremented automatically by the program. To obtain all the possible transfer 
arcs ,  it is necessary to  increment either A b  or vo, but not both. As vo is chosen 
to  be the incremented parameter, the wait time is set equal to zero. 

The true anomaly +o is chosen, and when the transfer time A t  is varied, a set 
of curves for the variation of AV with A t  with vo as the parameter are obtained for 
a specified value of +o. The program does not increment +o automatically as it does 
for At, A b ,  and vo. However, it always returns to  read the first data card of a new 
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with @f as the abscissa value rather 
than At  and is possible because of the 

The transfer time At is read in 
as follows : 

At(f i r s t )  = 0.09 

At(1ast) = 1.008 

6t = 0,009 

@o = Constant 

Sketch 1 

-. . - 
@f 

These quantities are dimensionless ratios to the target orbit period. 
input as 

The waiting time is 

A&(firs t )  = Ab(1ast) = 6tw = 0 

Some sample computer output is shown in table III for @o = 0.0'. 

From a Beckman automatic plotter, the characteristics of one of the lower AV 
transfer orbits a re  found to be 

v. = 550 

@f = 193.58O 

A t  = 0.64 

e = 0.4361 

a = 1.086 

ei = 71.96O 

AB = 132.47' 

i = -22.88' 

pmin = 0.78 

AVi = 0.0808 

AVf = 0.2563 

AV = 0.3371 

1 
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CONCLUDING REMARKS 

This report presents a technique for solving three-dimensional orbital problems in 
a straightforward manner using the exact solutions or Kepler solutions to the equations 
of motion. Basically the method developed is an iteration on the Kepler equation using the 
true anomaly as the iteration parameter and the mean anomaly or  transfer time compared 
with a prespecified transfer time as the stopping criteria. To aid in  the choice of the true 
anomaly to  begin the iteration, certain boundaries are devised within which the solution 
must lie. The iteration is performed directly on the Kepler equations and no derivatives 
are necessary. This method works very well and the computation time compares favorably 
with other methods, the typical run times being about 0.003 minute per transfer. The 
generality of the program format presented allows rapid computations, with simple engi- 
neering input parameters, of interplanetary rendezvous or near-planet rendezvous cases. 
For  instance the program has proven useful in studies concerning fuel requirements for 
abort missions during lunar letdown of the lunar excursion module and command module. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 14, 1966. 
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APPENDIX A 

OBTAINING KEPLERIAN ORBITAL ELEMENTS FROM 

RELATIVE COORDINATE DATA 

In many problems concerning rendezvous, the initial conditions a r e  given in terms 
of the relative position and velocity of the interceptor with respect to  the target. If the 
Keplerian equations are used for the exact solution of the motion, the Keplerian elements 
in te rms  of the relative coordinates must be obtained. 
tion vector (see fig. 5) of the interceptor with respect to  the X " , Y ~ ~ , Z ' ~  coordinate system 
attached to  the target; x" points away from the gravitational center, y" is in the posi- 
tive direction of angular motion, and z" is along Z normal to  the xtty" plane. 

Let x;,y;,z; be the relative posi- 

Suppose that the following are given in dimensionless form: eT, @o, x;, y;, z;, 

2;, 
and iI. 
along x", y", and z", and obtain the radius vector 

and 2;. It is desired to  find the Keplerian constants eI, aI, vo, 521, 01, 
By using the formal application of vector analysis, let i,j,k be unit vectors 

A A  I 

$ = (r + X T ' ) ~  + y"S + z l 4  (AI) 

for the interceptor, and since the rotational rate of the ( ~ ~ ~ , y ~ ~ , i P )  coordinate system is 
c$, the velocity is 

8 = (i- + 2)4 + $13 + Z f G  + (bG x g (A 2) 

The velocity of the interceptor becomes : 

The fundamental relations of orbital mechanics show that 

pT = 1 - eT2 

PT 
1 + eT cos 

F 5  

r =  

eT sin @ i.= 

J 
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From these expressions the velocity of the interceptor in its initial orbit can be written 
in terms of the desired quantities along the axes of the moving xlT,yll,zll coordinate 
system. Quantities considered here a re  at the time t = 0 and are subscripted accord- 
ingly. The velocity components at t = to along the XI', y", and z" axes will be 
denoted by Vol, Vo2, and Vo3, respectively; thus, the interceptor velocity becomes 

A A A A 

V = Voli + VO2j + Vo3k (A61 

By using equations (A4), (A5), and (A6), the components are written in terms of known 
quantities as 

eT sin Go 
vol = +$A - y; 

The energy equation for ,.-e interceptor at time to may ,e written (nondimensionally) as 

where to, Vo are magnitudes of the defined vectors [, ? at time to or 

vo = jlv,12+v,22+v,32 
By using equation (A8), solve for the semi-major axis aI 

(0 

a1 = 2 - (,V02 

To determine the eccentricity of the initial interceptor orbit, write the angular 
momentum at time to of the interceptor, 

n A cI 

Ho = to x vo (A1 2) 
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where go and co a r e  dimensionless quantities. If 

A A A * 
Ho = Holi + HO2j + HO3k 

performing the indicated operations yields 

and 

In the nondimensional form, the angular momentum and semi-latus rectum may easily be 
shown to be related as 

4 = Ho 2 (A1 5) 

and therefore the well-known relationship pI = aI(l - e12) gives with equation (Al5): 

lt, i; 
t 

A 

HO I 

I - J  
Sketch 2 

Sketch 2 and figure 5 a re  given as aids in 
describing how the angular measures iI, Os, 
and wI a r e  determined. The unit vector N 
directed along the line of nodes of the initial 
interceptor orbit and pointing toward the 
ascending node is defined by the relation 

The inclination iI is also described by the 
re lation 

* *  
k. H 0 = H o  cos iI (A181 
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and equation (A18) gives 

iI = cos- 1% 
HO 

From figure 5, it is geometrically evident that 
* *  
I = i cos cpo - S sin cpo 

and also from the definition of the angle QI 
A A  

COS QI = I N 

* A  

i; sin nI = I x N 

and expanding the vector manipulation of equation (A17) gives 

A Ho1 A H02 N =  j -  Ho sin iI Ho sin iI 

From the well-known relationship 

obtain 

1 PI 1 

eI 50 
cos vo = - - - 

A basic orbital relationship which is of value here is 

E i 0  
sin vo = 

eI 

and, as io is the component of Go along zo, 
* 

5 , = V 0 ' -  * 50 

50 

In order to  find the angle wI, note that another geometric relation is 

* A  

5 ,  N = 5, COS wI + v ( 0) 

(0 < iI < 4 (A19) 
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and also 

Note also that vo may be found from equations (A24) and (A25) as 

From equations (A20), (A21), and (A23), 

HO2 cos @o + Hol sin @o 
.Ho sin iI 

cos a1 = - 

From equations (A30) and (A31), 

and the proper vector manipulations with equations (A20), (A22), and (A23) yield 

Hol cos @o - HO2 sin @o 
Ho sin iI 

sin QI = 

Similarly, performing the indicated vector manipulations on equations (A27) and (A28) 
leads to  the scalar equations 

cos W I +  v = t02H01 - [olHo2 
0) COHO sin + 

(03 sin wI + v - ( 0) - eo sin iI 

If the inclination iI is zero, aI is arbitrary; thus, let 

a1 = 0 

Also, equations (A27) and (A28) yield 

(A3 5) 
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Whether iI is zero or not, equations (A33), (A34), or (A36), (A37) give 

sin wI + v wI+ v =tan-'[ ( o'] 
0 cos (w1 4- vo) 

and equation (A38) with equation (A29) give the desired expression 

w1 = (wl + vo) - Y o  

Equations (Al l ) ,  (A16), (A19), (A29), (A32) , and (A39) give the information necessary 
to  compute the desired Keplerian elements. 
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MATHEMATICAL DESCRIPTION OF PROBLEM 

The following description is a logical flow of the problem as it is programed. 

Description of Initial and Final Properties 

If the initial and terminal states of an orbit referred to  two other elliptic orbits, 
namely, the interceptor initial orbit and the target orbit, and also the time required to  
transfer from orbit to  orbit are known, the velocity increments required to  establish the 
transfer orbit and the elements of this transfer orbit may be computed. The initial and 
terminal states may be found from the input as follows. Suppose that the following data 
a r e  given: p, aT, eT, @o, eI, aI, W I ,  521, iI, vo, At,, and At. Recall that all 
quantities except p and aT a r e  dimensionless. 

from 
Compute the semi-latus rectum of the initial interceptor orbit and the target orbit 

The target orbital period in seconds is 

= 2 4 %  3 

P T  

The eccentric anomaly of the target at t = to is found from eT and @o by the 
defined relationship 

$0 tan-= \/:;tanT - 
2 

and then functionally as 

For computational purposes, define the function F(a,p) as 

~ ( a , p )  = 2n7r + 2 tan-' 
lSt and 4th quadrants 
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where 

a! = eT] 

and 

n = Integer(%) 
lowest integer value 

y = 1.0 

y = -1.0 

(a! < 1.0) 
(B54 

(a! > 1.0) I 
Note that allowance is made here for  the possibility of hyperbolic orbits because F(a!,P) 
will also be used for transfer orbits. 

The mean anomaly of the target orbit at t = to is found directly from Kepler's 
equation 

MTo = ETo - eT sin ETo 

The mean anomaly of the target at the final time t = tf is 

The eccentric anomaly of the target at t = tf is required s o  that the true anomaly 
at t = tf may ultimately be obtained. It is possible to  solve for the eccentric anomaly by 
use of an expansion in terms of the infinite Bessels series (see ref. 9) but it was found to  
be more rapid to iterate the Kepler equation by using the method of differential correction 
as shown in reference 5 or 9. The steps in the iteration procedure a re  as follows: 

from truncated ser ies  solution of the Kepler (1) Estimate the initial value El 
equation 

El = Mo + e sin Mo + - e  1 2  sin 2M0 
2 

(2) Compute the following sequence : 

28 



APPENDIX B 

i = l  
Mi = Ei - eT sin Ei + 1 

I A% = MTf - Mi 
AEi = AMi 1 - eT COS Ei) i = i + l  
Ei+l = Ei + AEi 

/( 

which gives after the completed iteration: 

At t = ti the eccentric anomaly of the interceptor ELi is obtained from vo, e17 
and Atw in the same manner as 
pleteness with eccentric anomaly of interceptor at t = to as 

ETf. The expressions are rewritten here for com- 

EIo = F(eI>Vo) 

where F ( 1  e 'v0 ) is the function previously defined (eq. (B5)) with Q! = eI and p = v 0' 
Also 

MIo = EIo - eI sin (EIo) 

At t = ti the interceptor mean anomaly is found from 

The iteration steps a r e  shown in equations (B8) and (B9) with the following 
replacements: eT by eI; Mm by MIi; Em by EIi. 

With this information the true anomalies at the initial and f ina l  times of the intercep- 
tor  in its initial orbit and the target in its orbit may be computed. The routine given by 
equations (B4) and (B5) will give these values if -a is replaced by the corresponding e. 
Thus, the true anomaly of the interceptor in its initial orbit at t = ti is, a! and p in 
F being replaced by the parameters -eI and EIi 

vi = F -e E ( 17 E) 

and the target in its plane at t = tf is 
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With these quantities it is possible to compute the properties ti, ii, Ci, rf, if, 
and 4, which will be required for  computation of the velocity increments. The initial 
radius vector is 

The rate of change of true anomaly at t = ti is 

Also the rate of change of the radial distance is 

For the final time t = tf, the properties of the target orbit a r e  

PT 
1 + eT cos @f 

r =  
f 

E 
i f  = r f2  

If an interceptor is to transfer (or rendezvous) from one orbit to another, the two 
orbits being determined by this information, it must begin at t = ti in the initial orbit, 
change velocity (instantaneously) to  the transfer orbit at t = ti, and travel until t = tf in 
the transfer orbit. Then it instantaneously changes its velocity to  satisfy the terminal or 
target orbit properties. Enough information is now available to compute the initial and 
final terminal velocities but further discussion of this procedure will be delayed until the 
initial and final transfer orbit properties have been computed. 

Computation of Transfer Orbit Properties 

Information giving initial and final terminal vectors in space .$, if is available, 
and it is now necessary to  determine the transfer conic which connects these two vectors 
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in  the specified transfer time At. Reference 3 shows that the solution to  this problem 
is unique. However, because of the implicit nature of the Kepler problem, it is necessary 
to  perform an iteration in order to  obtain the solution. The method used here is a 
straightforward iteration of the Keplerian orbital equations as was also described in 
reference 3. 

The plane of the transfer orbit is specified by the plane containing the initial and 
final position vectors and the center of attraction. The transfer plane inclination i and 
the transfer angle A0 a r e  determined with the aid of vector representation. Let i, 
3, and l? be unit vectors along X, Y, and 2 axes; let 1?, 3, and k be unit vectors 
along x, y, and z axes as shown in figures 1, 2, and 3. Let pid be the x to  X 
transformation matrix so that a general vector transforms as: 

&IJK) = pij]&ijk) 

The initial vector may be written as 

ti = ti(cos vii + sin v.1 1 ”> 

By letting til,ti2,ti3 be the components of ti along the X,Y,Z axes, the following 
relations are obtained: 

E, = rf (cos +& + sin +fj) 

In order to  examine the vectors in the f,j,l? system, a transformation of components is 
required; thus, 

Ci(I,J,K) = p . j i . ( i j k )  13 1 

where 

wi cos nI - cos iI sin QI sin wI - sin wI cos nI - cos iI sin n1 cos wI sin nI sin iI 
wI sin nI + cos i cos aI sin wI - sin wI sin n1 + cos iI cos n1 cos wz - cos nI sin iI (B20) 

I 1 sin iI cos wI cos iI I sin i sin w I 

From equations (B18), (B19), and (B20), 
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til = si[cos ai cos vi + wI) - cos i I sin nI sin ( 
ti2 = t i b i n  oI cos(vi + wI) + cos i cos 51 sin v. + w 

I 1 ( 1  I]} 

5.. = ti sin i sin vi + w 13 [ I ( I j  

To determine A0 and i, note the vector identities: 

Note that the unit vector i? along the z'-axis is written as 

A *  

k' = I sin i sin 51 - sin i cos $2 + k cos i 

J 

and since 

A A A A 

k' = - sin i sin GfI + sin i cos @fJ + cos iK 

From equations (B18), (B19), (B23), and (B24) find 

5i3 sin A0 sin i = - 
(i 

Combining these equations and solving for  i yields the following expression: 
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and also 

s in  A9 A9 = arc tan - 
cos A9 

The nodal angle C2 may be expressed by 

C 2 = @ f + n  

= @f 

(0 S A9 5 27r) 

(i > 0) 

(i < 0) 

An inherent symmetry in the equations exists so that it makes no difference in the itera- 
tion whether the transfer from Ei to if or cf to  ii is considered, and advantage of 
this symmetry is taken by considering transfers only from the shortest of .$, 1, to the 
longest. Therefore, let p1 be the minimum of ti, rf and p2 be the maximum of ti, 
rf. (If rf = ti, p1 = p2 = p = rf = ti.) 

The chord c is givenby 

A geometric picture is shown in the following sketch: 

Sketch 3.- The quantities pl, pa, A9, and c. 

By assuming a periapse angle of in the transfer plane, an orbit between p1 
and p2 can be determined as shown in the following sketch: 
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t = T 2  

= T1 

- Periapse 

Sketch 4.- Transfer orbit for corresponding el. 

For each properly chosen angle el, there is a conic section which passes through 
p1,p2 and an associated time of passage T1,T2. Hence, for  a given el, a given trans- 
fer time is generated. In general, this time will not be the desired transfer 
time At,  and thus an iteration is necessary. The necessary calculations for the deter- 
mination of the orbit by this method a re  now developed. Define 

T2 - T1 

e2 = el + he 0331) 

By eliminating p from the well-known expressions 

I P 
'1 = 1 + e cos el 

P2 = P 
1 + e cos O 2  

the unknown eccentricity of the transfer orbit is found from 

and the semilatus rectum 

1) 
p = pl(i + e COS e 

The semi-major axis is computed as 

a=- P 
2 1 - e  

0335) 

All the orbital parameters may be fixed by choice of the periapse angle el. 
A distinctive value of el  is the periapse angle e for parabolic transfer from p1 

to  p2 and the associated parabolic transfer time AT = T2 - T1. This value of el is 
P 
P 
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easily found since e = 1.0 for parabolic orbits. Letting el  = and using equa- 
tion (B32) yields 

eP 

or  

(pl - p2 cos Ae)cos  e + p2 sin A0 sin ep = p2 - p1 P ( 1 
Then ep is found by trigonometric identity 

where the angle q is defined by 

p i  - p2 COS A0 
sin q = 

C 

p2 sin A0 
cos q = 

C 

1 sin I& 
cos I& =tan-  ( ) 

Let 

and then note both values of 0 in an  interval of 27r P 

= 7r - (a!+ I&) 
'P = 'Plmaximum 

(B37a) 

(B37b) 

(B37c) 

A geometrical description of +b is shown in the following sketch: 
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Sketch 5.- Geometric interpretation of I&. 

The semi-latus rectum corresponding to Bp is 

pi 
= p1 1 + COS e 

pp ( 
The parabolic transfer time is then found as follows: The time to travel from periapse 
to p1 is found in reference 10 and is 

= L ~ ( L  tan3 2 8 1  + - tan 
TPl  27r 'P 6 2 2  

and from periapse to p2 is 

e + A e  e p + A e  

2 
= ~p(,.. tan3 P + - tan 

TP2 27r P 6 2 2 

so the parabolic transfer time is 

AT P =Tp2  - Tpl 

This value may be used to compare the desired time At  of transfer and to deter- 
mine whether the orbit is elliptic At  > AT or hyperbolic At  < AT . ( P) ( P) 

There are certain definite regions in which el  must remain for a solution to  exist. 
These regions a r e  found by use of equation (B33) and the positive sign of e and p2 - P1' 
These equations imply 

p1 COS el > p2 COS e2 

which leads to  sin 

T -  * > e l  > -  I& 
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where IC/ is defined in equation (B37). It is seen that the lower limit for e l  is -IC/ 
for all cases. The angle 0 is greater than -IC/ as it is given by equation (B37). For 
an  arbitrary e, 

P 
is replaced by el and equations (B37a) a re  written 

0P 

From equations (B39) and (B37), the following inequalities a re  obtained: 

It may also be shown that the true maximum value for e l  is less than 7r - IC/ and 
is the second parabolic solution 

Hence, the following regions for choice of the iterative periapse angles O 1  a re  
determined from these relations: 

(1) If At  < ATp, then e > 1 (hyperbolic transfer) and -IC/ < el  < ep 
(2) If At > ATp, then e < 1 (elliptic transfer) and €Ip < O1 < T - 2 IC/ -1- 0 

(3) If A t  = AT , then e = 1 and the solution is e l  = B p  
A geometric interpretation may be given to these regions and an example is shown in 

( p) 
P 

the following sketch: 

Sketch 6.- Regions of possible choice for the periapse el.  
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Elliptic transfer orbits.- In the case that At > ATp, the transfer orbit for rendezvous 
must be elliptic and hence 6 < el < 7r - 2Q - Op. The iteration scheme used here is a 
straightforward computation of the values T2 - T1 for values of el starting with 8 
and continuing until T2  - T1 becomes equal to  At. That is, the interval of el  is 
divided into h smaller intervals 68 where 

P 
P 

The first estimation of el is 8 + 68 and with this value compute P 

p2 - p1 
p1 COS e - p COS e e =  

2 1 2  

p = p1 1 + e cos o1) ( 
a=--- P 

1 - e  2 

and the eccentric anomalies El and E2 from the F(a,p)  function defined previously 
to  give: 

and the elliptic time 

sin E2 - sin El] 
1 27r 

This value of T2 - T1 is compared with At  .and if still too small, another increment 
68 is added to O1 and the process repeated. When T2 - T1 is larger than At,  then 
the interval 68 is halved and subtracted from the last value of e l .  This method of 
iteration is free from the singularities involved in methods using derivatives and is not 
significantly longer. The value of h used affects the time of iteration; however, an 
arbitrary value of h = 3 seems to produce sufficiently fast convergence. 
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Hyperbolic transfer orbits.- A value of A t  < AT gives hyperbolic transfer orbits 
P 

and hence -* < < 9 
although the equations Mfer slightly. These equations appear as 

The method of iteration is identical to that for the elliptic case 
p: 

9 1  = ep - 69 

The iteration begins at 9 
smaller el 

as in the elliptic case but now proceeds into the region of 
P 

p2 - p1 
p1 COS e l  - p COS e 2  

e =  
2 

p = p 1 + e cos e,) 1( 

a = P  
2 1 - e  

The hyperbolic time functions must now be used and equation (B5) is applicable if y is 
set  equal to -1.0; thus, 

anomalies" which are the F(a,p)  functions with the preceding replacements. 

is obtained. Proceed with the usual hyperbolic "eccentric 

F1 = F'(e,gl) 

F2 = F'(e,B2) 
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Compare T2 - T1 with At. If it is still larger, compute again with a new el 
decreased from the last by 69. If T2  - T1 is greater, increase el by and pro- 
ceed in this manner until the desired agreement is obtained. 

Special cases.- ~. In the case that 
special computations are necessary. For instance, the iteration can no longer be accom- 
plished by incrementing el as el  becomes a fixed value -IC/. The problem is solved 
by iterating the eccentricity in a straightforward manner and is easily followed in the flow 
chart in appendix D. 

p1 = p2 in either the elliptic or hyperbolic case, 

In the case that the time ATp happens to  be equal to  At, then there is no further 

Computation of ~~ the properties.- After obtaining el, information on the rates of change 

iteration as the solution is the parabolic case. 

is obtained. Also the quantities p1 and p2 must be reassociated with rf and ti. 
The properties of the transfer orbit occurring at t = ti, t = tf are defined as pi, pf, 
ei, and ef where 

These relations follow directly from the geometry of the transfer orbit and the defini- 
tionthat p1 is the minimum of rf and ti and p2 is the maximum of rf and ti. 
The rates of change at t = ti; t = tf in the plane of the transfer orbit may now be com- 
puted. Immediately after the impulse at t = ti, 

e i =  p- 1 

Pi2 

bi = e sin ei 

and immediately before the impulse at t = tf, 
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The transfer orbit plane is defined in exactly the same way as the initial interceptor 
orbit with the elements 52, w, i, and 01. The anomaly 01 and inclination i were 
found previously. Once 52 and w have been determined, the transformation matrix 
[bij] for transforming the position and velocity vectors in x', y', and z' (see fig. 3) 
t o  components in X,Y,Z is needed. This transformation matrix is identical with the pij] transformation matrix where wI, aI, and iI are replaced by w, 52, and i. 

The velocity vector at t = ti in the x' direction is ii(x'), y' is bi(y'), z' 
is bi(z') where 

bi(Z') = 0 

The velocity components at t = tf in the x',y',z' coordinate directions a r e  

I 
bf(Z')  = 0 J 
pf(x') = pf cos ef - pfef sin of 

if(y') = sin of + pfif cos of > 0343) 

These velocity components may be transformed to  components in the X,Y,Z 
system by use of the kij] matrix above. 

ceptor orbit and t = tf in the target plane. Then at t = ti in the x,y,z coordinate 
system: 

,$(XI = ti cos vi - tiii sin vi 

&(y) = i. 1 sin vi + cos vi 

coordinate 

From these results the velocities may be determined at t = ti in the initial inter- 

.$(z) = 0 

which may be transformed to  X,Y,Z coordinates by the matrix 
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Finally, obtain the velocity after the final impulse directly from the components 
X,Y,Z without transformation 

7 rf(X) = rf cos Gf - rfGf sin $f 

I if(Y) = if sin Gf + rfcjf cos Gf 
i f ( Z )  = 0 

Thevelocities in X, Y, and Z 

The matrix operations on these vectors give the desired velocity components in the 
Newtonian frame X,Y,Z. These components are denoted by Vk(j) where the subscript 
k refers to  the time (where k equals 1 and 2 just before and after the initial impulse 
and k equals 3 and 4 just before and after the final impulse) and j to the component 
X,Y,Z. These velocity components, in te rms  of the components shown in equations (B42), 
(B43), (B44), (B45), and the elements of the Pij] and [kj] matrices, are given in the 
flow diagram of appendix D. 

The velocity increments required to perform the rendezvous maneuver a r e  easily 
found by subtracting these components. For the velocity increment at t = tl, it is neces- 
sary to  subtract the corresponding components of state (1) from state (2) as 

AVi(X) = V,(X) - V,(X) 

AVi(Y) = Vz(Y) - V,(Y) 

AVi(Z) = V&Z) - V1(Z) 

and for  the terminal maneuver subtract state (3) from state (4) to give the desired 
increments 

The total velocity increment for the maneuver is the sum of the maneuvers at t = ti 
and t = tf (AV2) 
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AVf = p f ( X ) z  + AVf(Y)2 + AVf(Z)z 

and 

AV = AVi + AVf 
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DESCRIPTION OF PROGRAM 

This program was written in the FORTRAN IV (Ibsys version 9) language for  the 
IBM 7094 computer at the Langley Research Center. Throughout the program there is an 
emphasis on simplicity, but capability has been provided for several uses and for a free- 
dom of choice on input and output. 

The method of solving the problem can readily be obtained by following the flow dia- 
gram (appendix D) and the description given in appendix B. The description in this 
appendix gives additional information about the options available, types of input and out- 
put, criteria for testing variables for transfer in the program, cri teria for testing the 
convergence in the iterative processes, and criteria for incrementing the times. The 
methods used in the iterative processes a r e  described fully in appendix B and can be 
followed on the flow diagram (appendix D). The flow diagram also shows the methods of 
incrementing AI+,,, At, and vo. 

A complete listing of the FORTRAN IV program is given as appendix E. 

Subprograms 

Six small subprograms a r e  used in addition to  the main program. They are called: 
AAA, VELOC, SIX, ANOM, SPACE, and CONVRT. An explanation of the computations, 
provided by AAA and ANOM, are included in appendix B. 
AAA and equations (B9) a r e  contained in ANOM. The other subprograms a r e  self- 
explanatory; however, a brief description of the uses of all six subprograms is given here. 

AAA is used to compute the eccentric anomaly if the true anomaly is known or vice 

Equations (B5) a re  contained in 

versa. 

VELOC is used to compute the velocity components. 

SIX is used to compute the elements of the [aij] and [bid matrices. 

ANOM is used to  compute the eccentric anomaly if  the mean anomaly is known. 

SPACE is used to test the line count and to skip pages and print column headings when 
necessary. 

CONVRT is used to convert the times from dimensionless quantities to units corre- 
sponding to input for printing purposes. 
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Options Available 

The program offers several options for choosing the variable which will be incre- 
mented initially and for choosing the type of input. This choice is made by reading in 
three control factors: GUIDE, OPTION, and DATAS. 

GUIDE determines whether Atw or At  varies initially in the program and gives 
the appropriate output format regarding the choice. The program provides that the time 
A b  or At not incremented initially will be incremented secondly, after which vo will 
be incremented. This procedure works for any number of At, A b ,  and vo values. 
The quantity incremented initially will appear as the abscissa for  ease in plotting or ana- 
lyzing the data. Hence, 

if GUIDE = 1, Atw varies initially; 
if GUIDE = 2, At varies initially. 

OPTION provides a choice of three types of input for times: 

OPTION = 1, Atw, A t  input dimensionless; 
OPTION = 2, Atw, At  input in minutes; and 
OPTION = 3, Atw, A t  input in  days. 

Restrictions are placed on maximums for Atw and At  because of the six spaces 
allowed by the output format for printout of the quantity varying initially. The restrictions 
are due only to the output format, and may easily be changed. 

(a) If either time exceeds 9999.0 minutes, they must be read in either dimensionless 
or in days.  

(b) If either exceeds 9999.0 days,  they must be read in dimensionless. 

(c) If either exceeds 9.9999 in dimensionless time and is restricted by (a) or (b), the 
leftmost characters of the value will  not be printed on output. 

DATAS provide a choice of input: 

if DATAS = 1, use Keplerian input; 
if DATAS = 2, use relative orbital input. 

Input 

Information on input may be found in the "Computer Input and Outputtt section of the 
paper and in the immediately preceding paragraphs. Input is to be made in units 
according to  the following criteria: 
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(1) The quantities p and aT a r e  dimensioned, unless time is dimensionless in 

PT which case they may be in  any units desired. However, in order to  get values for 
and VCT, 1-1 and aT shouldbe dimensioned. 

(2) All'angles are in  degrees. 

(3) Times a r e  in  units described under "Options Available" i n  this appendix. 

(4) All other quantities are dimensionless. 

Input cards in the order to  be read in and the proper FORTRAN formats for each are 
listed in the following table: 

Order of cards Variable names 

GUIDE, OPTION, DATAS 
AMU, AT 
AH, RMIN, ET, PHI0 
DTWI, DTWF, DTTI, DTTF 
DELTW, DELTT 
Keplerian input: 

Relative orbital input: 

Keplerian input: 

Relative orbital input: 

EI, AI, OMEGAI, @MI 

xo, Y O ,  zo 

AII, ANUO1, ANUOL, DELNUO 

XODT, YODT, ZODT 

Output 

FORTRAN format 

4318.8 
4318.8 
4318.8 
4318.8 
4318.8 
4318.8 

4318.8 

4318.8 

All output will be in units corresponding to  input. The output format will vary as A t  
and Atw a r e  varied initially. When a set  of data is read in, those initial conditions are 
printed. As vo and A t  or Atw a r e  incremented, they are printed. The computed 
values are then printed in columns. Special notation and messages which may be printed 
are 

(1) If relative orbital input is used and itI is computed as less  than zero, a message 

(2) If i 2 90' - 0.lo, the message '5 = +/-go degrees not acceptable data" is 

to  this effect will be written and the program will transfer to  the initial input section. 

written. 

(3) If the orbit is parabolic, the value for a will appear as 99.999 instead of 00. 
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(4) zf Pmin < rmin, an asterisk is printed at the extreme right-hand end of the line 
of data. 

Testing Criteria 

There are several places in the program where tolerance factors or allowances for 
computational inaccuracies must be defined to insure proper flow through the program. 
An explanation of the values chosen in these tests follows: 

Values compared 

- H03 with 0.99999995 
Ho 

il with 90° - 0.lo 

AT with At P 

i with 0.5 X 

AT with At 

60 with 1.0 X 

6e with 1.0 x 
0- 7 
0-7 

AB with O.OOO1° 
AB with 3600 

- 0.00010 

Remarks 

This test compares the value of the cos iI, H03 , to 1.0, and 

restricts the minimum value of a computed iI to be 0.0001 
radian; otherwise, iI is set  equal t o  0 

(&) 
Data which result in an i of 90' are not acceptable in this pro- 

gram. The absolute value of i is tested against 90' with a 
margin of 0 . 1 ~  

This test of the parabolic time against the transfer time to 
determine the type of orbit results in a parabolic orbit only 
i f  the values a re  equal. A tolerance of 0.5 X 10-6(At) defined 
as CFUT w a s  allowed at the point of equivalence for computa- 
tional e r ro r  

For this test a margin of tolerance of 0.5 x 10-7 was allowed 
for machine inaccuracy 

This test  is made to  determine when the convergence is suffi- 
cient to leave the loop in the iteration process. A value 
CFUT = 0.5 X 10-6(At) was  defined to give a tolerance mar- 
gin based on the value of the transfer time and to cover any 
computational e r ro r  

The appropriate test is made in each iteration scheme to test 
for the effectiveness of the increment on the variable. If the 
increment is equal to or less than the value tested against, 
its effect on the variable is negligible and the iteration is 
ended. This procedure acts as a safety check for ending the 
iteration in the event that AT never gets within the pre- 
scribed range (CFUT) of A t  

A tolerance margin of 1.0 X 10-6(aI), defined as CRIRHfB, pro- 
vides for transfer to the special iteration necessary when 
P1 = P2 

Restrictions a r e  put on a margin of O.OO0lo around 
AB = Oo(36O0) because of computational sensitivity. 
these cases, transfer orbit properties are set equal to the 
initial target orbit properties and the iterations are omitted 

For 
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The quantities used for testing in incrementing Atw, At, and vo are as follows: 

TWFMDT = Atw(last) - 1.5(6tw) - TESTTW 

TTFMDT = At(last) - 1.5(6t) - TESTTT 

ANLMDN = vo(last) - 1.5(6v0) - 1.0 x 

DTWFT = A&(last) - TESTTW 

DTTFT = At(1ast) - TESTTT 

ANUOLT = vo(last) - 1.0 x 10-7 

TESTTW = 0.5 X , or = 1.0 X lom7 

TESTTT = 0.5 X 10-6bt(last)l, or = 1.0 X 

The TWFMDT is used to test against Atw and allows it to be incremented by 6tw 
until Atw is greater than or equal to Atw(last) - 1.5 6tw. A value TESTTW is arbitrar-  
ily chosen as 1.0 X or 0.5 X 10-6F&(last] depending upon whether 6tw is 0 or is 
greater than 0, respectively. The TESTTW value is included to  provide a tolerance for 
computational e r ro r  in the value of TWFMDT if the 6tw is equal to  0 and to insure 
that control is transferred out of this loop after computation with Atw(first). The DTWFT 
is used to  test  against 
Atw(last) - Atw(first)  

Atw and always provides the computation for Atw(last), even if 

~- is not an integer. This separate control for the f i n a l  point also 
6tw 

insures ease in incorporating any additional desired statements or controls, such as those 
for  plotting routines, in the program at the end of a series of incrementations. The 
TESTTW in the expression for DTWFT provides tolerance for machine error .  

The same explanation applies for TTFMDT, DTTFT, and TESTTT, if these variable 
names replace TWFMDT, DTWFT, and TESTTW in the preceding paragraph. These vari- 
ables a r e  used for testing in the incrementing procedure for At. 

A similar explanation for ANLMDN and ANUOLT, used for incrementing vo, holds 
with the exception that the tolerance margin or computational e r ro r  is chosen as 
1.0 X for both values, instead of being a ratio as in TESTTW and TESTTT, because 

the number of places used in the computation. 
is in radians (in the form X.xxxxxML) and the 1.0 X will always be effective on vO 
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The mathematical symbol and its FORTRAN equivalent are given in the following table: 

Mathematical symbol 

a 
a.. 
9 

b.. 
9 

C 

e 
E 
F 
h 
H 
i 
M 

P 

PT 

Atw 

T1 ,T2 

r 

At 

AT 
V 

‘CT 
V,(j) 
AVi(j 1, AVf (j 1 

p t  ,y” ,zt t ,$I, ,+’,;I, 

AVi,AVf 
AV 

- a 
Y 
Y 
Ae 

- 

e 
6e 

P 
U 

5 

P 

For t r an  symbol 

AT,AI,A 
All,A12,A21,A22,A31,A32 
Bll,B12,B21,B22,B31,B32 
C 
ET,EI,E 
ETO,ETF,EIO,EII,E L,E 2 
F l , F 2  
AH 
AH01 ,AHO2,AH03,AHO 
BI,AII,I,II 
AMTO,AMTF,AMIO,AMII,AMl 
PI, PT ,P, PP 
TPER 
RO ,RODT ,RF ,RDT F ,RDTF 1 ,RDT F 2 ,RMIN 
DTWI,DTWF,DELTTW 
DTT1,DTTF ,DE LTTT 
T1 ,T2,TP1 ,TP2 
DT,DE LTTP,DE LTTC 

VCT 
vo1 , v o 2 , v o 3 , v o  

v11,v12,v13,v21,v22,v23,v31,v32,v33,v41,v42,v43 
DV1 l,DV12,DVl3,DV21,DV22,DV23 
DE LV1 ,DELV2 
DE LV 
XO,YO,ZO,YODT, ZODT 
ALPHA 
GAMMA 
GAMBAR 
DE LTTH 
TH1 ,TH2,THP,THI,THF,THDTI,THDTF,THPMAX 
DE LTH 
AMU,MU 
ANUOl ,ANUOL,ANUO,ANUI,ANUDTI,NUOl ,NUOL,NUO,NUI 
XI01 ,XI02,XI03 ,XIO,XIODT ,XII ,XIDTI,Wl,W2,W3,WDT 1, 

RH@ 1 ,RHO2 ,RHO1 ,RH@F ,RH@DTI ,RH@DT F ,R@DTI 1 ,R@DTI 2, 
R@DTF1 ,R@DTFS,RH@M 

PHIO, PHIODT, PHIF,PHIDTF 
PSI 

@MI,@M 
@MEGAI,@MEGA 

W D T 2  
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APPENDIX D 

COMPUTATIONAL FLOW DIAGRAM 

The computational flow diagram is given in this appendix. All quantities are dimen- 
sionless unless otherwise specified. Provisions for control of spacing on output are not 
included on this diagram. 

Input 1. -r 
1 DATASz2.0 

d - 7  

Change degrees to radians ($o) a 

write input 
Write message: % i s  less than Zero 

I 

cos Yo - 1.0 
sin Y = 0.0 
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I DATAS = 1 

W Z  
uo(f irst) 

5 0  

GUIDE = 2 

depending upon the value of 

d 

Write 
At (first)choosing format 

depending upon the value of 
OPTION 

1 - 
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9 
I - Ho2 cos $no + Hol sin o0 

cos a1 ,= I Ho sin iI 

Sin Q 
a1 = arc tan - cos aI 0 c a1 c 2n 

EoZHol - 501H02 
eoHo sin iI C O S ( W I +  Y g )  = 

Sin(WI+ Yo) = Eo sin i1 J 
Sin(WI+ Yo) 
COS(WI+ Y o )  

0 < ( W I  + Y o )  < 2n (WI + yo) = a r c  tan I 

0 
Change At and Atw to dimensionless 

quantities: 

Option = P T  

4 t 

completion of incrementing At,, At, and yo: 
Compute quantities to use in testing fo r  the 

TESTTW TESTTT TWFMDT TTFMDT, h Ez 
ANLMDN’, DTWFT,’ DTTFT, ~ U O L T  

u0 = u,(first) 

Atw = Atw(first) At = At(first) 

3 

At = At(first) Atw = At,(first) 

8 

9 ti = 1 + e1 cos vi 

v. -E 
1 -  

t i 2  

. eI sin vi 
ti = 

I6 

*Si in this  diagram re fe r s  to Function Subprogram AAA. 
**S2 in this  diagram re fe r s  to  Subroutine Subprogram ANOM. 
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til cos $y + 5B sin $q 

5i 
til sin +f - tiz cos 

COS A8 = 

sin A8 = ti cos i 

A O  = a r c  tan Z%LE 
- cos A8 

o z 8 z 2n 

6 
Determination of At?, i of transfer orbit 

til = t iEos  ~11 cos(ui + wI) - cos iI sin SZI sin(ui + wIfl 

ti2 = 6iEin ~11 cos(ui + wI) + cos iI cos ~11 sin(ui + wd] 
ti3 = t i p in  i I  sin(ui + wd] 

AI? 5 0.0010 

---a 
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e = 1.0 

e1 = e, 
e2 = e1 + A e  

At elliptic > ATP 1 a = m (99.999 for printing purposes) --i) 

Pmax and 'This precaution is necessary in cases where 81 = e 
machine computes e to be (falsely) greater than 1. 
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elliptic (Pi = P2) 

LL 
p = pl ( l  + e c o s  q) 

6'1 = -9 

AT = - $ P ( E ~  - e sin E ~ )  

AT > At 
e = e + b e  

1 

be C 1.0 x 

p = p l ( l  - e cos 9) 

h 

0 2 + 
0 
2' 

6e 5 1.0 x 10-7' 
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hyperbolic loop p1 # p2 

I 68 5 0.1 X lo-’ 

Write message + p = pl(l + e cos 81) 

a = - - E  
1 - e2 

AT = T2 - T i  

e C 1.0 +- e : 1.0 

I e >.1.0 
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hyperbolic loop (p1 = p2) 

ATp > At 

P I =  P2 

P = p1(1 + e cos 01) 
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p .  ,p-- 
e1 < o 

1 + e  
Pmin < rmin 

3 

a l l  = cos wI cos 521 - cos iI sin 521 sin wI 

a21 = cos WI sin aI + cos iI cos 521 sin WI 

a31 = sin iI s in  WI 

aI2 = -sin wI cos 521 - 

a22 = -sin WI sin 521 + 

a32 = sin iI cos WI 

Print  out * 
in output 

cos iI s in  

cos iI cos 

e 
Pmin 2 "in 

i = O  
. -  

D = O  

cos W I  

cos W I  
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I 

1 i 

AVi = iAVi(X)2 + AVi(Y)2 + AVi(Z)2 
- 

AV = AVi + AVf 

~ - 

-- ___ ~ 

Convert radians to degrees for  printing: &, vi, 01, AO, i 

Convert t imes (At and At,) into units corresponding to input 

d 
- - __ 

- . __  I 
__ 

Srrite computed quantities according to appropriate format 
- - _. 

GUIDE = 2 
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?GUIDE = 1 

Atw 2 TWFMDT b 
Atw < DTWFT 

At, = Atw(last) - 

At = At + 6t 

Convert A t  into units 
At < TTFMDT 

and:k-@ corresponding to  input 

At Z TTFMDT 

At  < DTTFT At = At (last) * Convert At  intouni ts  
corresponding to input 
and write 

A t  2 DTTFT 

I 1 

I I 

uo 2 ANLMDN 1 
uo = vo (last) 
Convert At  (first) into 

units corresponding 
to input; write 
vo and At (first) 

uo 2 ANUOLT I 
Read in new input, 

beginning with 
input 1 
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At 2 TTFMDT 

- 
Atw < TWFMDT ~ ~ v ~ r ! , ; , " t \ t o  units 

corresponding to input 
and write 

* 

Atw : DTWFT <>""- I and write I . I 
L o  At, = Atw (last) 

Convert Atw into units 
carresvondinn to innut 

VFT 1 x 
, I Y Atw t DTWFT 

w0 = uo + 6v0 
Convert Atw (first)  into units 

corresponding to input; 
write u0 and At, (first)  

uo = uo (last) 
"0 < Convert Atw (first) into units 

c- corresponding to input. - 
write yo and Atw &,t) 

I uo2ANUoLT 

Read in new input, 
begianing with 
input 1 
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FORTRAN PROGRAM 

The FORTRAN program to determine the velocity increment required for rendez- 
vous between two arbitrary elliptic orbits is as follows: 
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c 
C 
C 

1 7  

APPENDIX E 

P l = A I * ( l . O - E 1 * * 2 1  
P T = l .  0- ET**2 
PH lO=?HI0* .17453293E-C1  
OI4EGAI =OMEGA1 *. 1 7 4 5 3 2 9 3 E - 0 1  
orJi I =o M I e .  1 7 4 5 3 2 9 3 E- o 1 
A I I = A I I * . 1 7 4 5 3 2 9 3 E - 0 1  
AN U 0 1 =Al.: U 0 1 * . I 7 4 5 3 2 9 3 E - 0 1 
ANUOL=ANUOL*. 1 7 4 5 3 2 9 3 E - 0 1  
DE LNUO=DE LI\lUO*. 1 7 4 5 3 2  93 E-0 1 
GO TO 200 
READ(5,100)XQ,YO,ZO 
READ ( 5 , 1 0  0 1 XO DT, Y 0 DT, Z 0 DT 
DELI\IUO=O. 0 
PHI O=PH I O * .  l 7 4 5 3 2 9 3 E - 0 1  
P T = l .  O-ET**2 
CPH I o=cos ( Pi4 I 0 1 
SPH I O=S I N (PH I 0 1 
RO=PT/ (l.O+ET*CPlS I 0 1 
PHlODT=SQRT(PT)/(RO**21 
ROGT=(ET*SPEIO)/S4XT(PT) 
V01=RODT+XODT-PHI ODT*YO 
VO2=YODT+PI-iI ODT*(RO+XO) 
V03=ZODT 
XI Ol=RO*XO 
X102=YO 
X I  O3=ZO 
XIO=SQRT(X1@1**2+X102**2+XlO3**2) 
VO=SQi?T(VO1**2+V02**2+VO3**2) 
A I=X10 / (2 .0 -X IO+VO**21  

IF AI IS LESS TIiM; OF? EQUAL TO Z E R O ,  A i lESSAGE YO TIIIS EFFZCT 1: 

I F ( A I  )17,17,18 

IJl1ITTEt.I AND TRA1;ISFER IS TO TFiE BEGI?:P!IPIS OF THE ?ROGRA:.I, 
L:ZIERE A NEPI SET OF DATA L1AY B E  READ ItI. 

T PER=G. 2 8 3 1 3  5 3 *SQRT ( (AT+:*2 / A :  IU 1 *AT 1 
VCT=SGRT( AI’IU/AT 1 
t:IR I T E ( G , 1 4 8 1 
~IRITE(6 , lOG)PI - I I  O,ET,A~~U,BT,TPER,VCT 
CI R I Y E  ( G , 11 2 1 
UP. I TE ( 6 , 1 2  6 DTT I , DTTF , DT!j I , DTUF, 2.11 I I I  ,f?fi 
I./ R I TE ( 6 , 11 4 1 
!.I R I TE ( 6,lO G 1 X O  , Y 0 , Z 0 , XO DT , Y G 3 T, ZO DT 
VIR I T.E ( 6 , 1 2  4 ) 
!iRITE(G,144) 
\ in  I TE (6,104 1 
GC TO 1 0  

1 8  A I i O l = X  I 0 2 * v 0 3 - x I  0 3 * v 0 2  
A t l O 2 = X  I 0 3 * V O l - X I  01*V03 
/3,H03=>: IO1*V02-X lO2*VO1 
P 1 =AH0 1 * *2 +A!{O 2 * * 2 +AH 0 3 * * 2 
AtIO=SQRT( P I 1 
X I I) B T= ( VO 1 * X 1 0 1+v0 2 * X 1 0 2 + V  0 3 -c X 1 C 3 / X 1 0 
P I  DA I = P I  /ti I 
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c TEST TO Il.ISUfiE Tl-1AT E l  I S  ilOT EQUAL TO TtiE SQRT OF A I ? E G  GUA:,f!TIT':' 
C DUE TO SLI GIfT COLIPUTI NG I I . IACCURACY 01.1 P I / f i I  . P;SSI GN 'JAL'JES 
C FOR COS(NU0) AEJD S lP~I (~ lU0)  I F  TIjE QUciP!TlTY U f : D E R  TIiE !??,E! Ci"\L 
c I S I'IEGAT I VE. 

I F ( P I D A I  .LT.l.O)GO TO 1 9  
E I = 0 . 0  
CGUO=l .  0 
S?!U0=0. 0 
G O  TO 2 5  

1 9  CONTI I4UE 
E I =SORT ( 1.0- ( P I / A I 1 1 

SrlUO=(SQRT(PI ))*XIODT/EI 

.c\AUO=ATAFI2 (SNUO,C!EUD 1 

I F ( S t-IU 0 . LT . 0 .!I . P,FID . C lil) 0 . LT . C . 0 ) A!! U c) = 5 . 2  8 3 L 8 5 3 + ;,F!L! 9 

c NU 0 = ( ( P I / x I 0 1 - 1.0 1 / E I 

2 S C O t i T  I I N E  

I F ( S  FUO , LT . 0 . 0 . [\I-13. C?i:J 0 , GT . 0 . 0 ) j?tl!LJ 3 =& .2 83 13 5 3 +A?ii..! 3 

1 3  CONTI PIUE 
AN!JO1=l,f]sg 
Cir:uo L=C,t!UO 

1 5  C t  I =?,!!05/,"ii.j0 
IF(CII.GE.0.99999995)SC TO 1 6  
A1 I=ATAIl(SQ2T(1.D-CI I**2)/Cl I )  
I F ( C I  I .LT.O.C))AI I=3.143-5S27+AI I 
SA1 I =s I i l ( A l  I )  
CO ,: 1 E G I =- ( Pa:! O 2 * C PI .! I 0 +Ai. 0 1 5: S P: i I 0 ) / ( A! 1 0 :*cS i? I 1 ) 
S Ot< E G I = ( A I  IO 1 * C PI i I 0 - Ati 0 2 * S P!-i I 0 ) / ( AH 0 Si1 I I 
CZ:iEC;/:! I =,tiTF5[12 ( S O i f E G  I , Cgi:lEG I 1 
I F (S OI4E G I . LT . 0 . 0 . AM 0. COP-1E G I . GT . 0 . 0 ) Of:; EGA i =E . 2  G 3 I 2  5 3 +GI.: EGC. I 

' 

I F ( SOP! E G 1 . LT . 0 . 0 . AIID . COI4 E G  1 . LT . 0 . 0 ) Of i EGA I = 6 .2 8 3 1.8 5 3 +CE 1 E 2 /1. i 
2 0  CCNT I ElUE 

co PPI= ( x I 0 2 *AH 0 1-x I 0 l*AliO 2 ) / ( ;c I 0 :*AH6 :vSA I I 1 
SOPN=X103/(XIO*SAI I )  
G O  TO 2 1  

OCIEGA I =O. 0 
16 A I  I=O.O 

C O P N = ~ X 1 0 1 * C P I I I O - x I o 2 * s ? ~ l o ~ / X I  0 
SOPN=(X101*SPi~IO+XI 02*CPi i iO) /Xt  0 

2 1 0 PP.l=AT/\f.i 2 (S  0 P t 1, CO PN ) 
I i (SO P b  . LY . 0 . 0 . AFID . CO PI.! . E T .  0.0 ) ( 3  P?!=6.2 8 31 Z 5 3+0 Pr! 
I F (SO PPI LT. 0.0. AND. CO PM . LS. 0.0 ) 0 P t!=6.2 8 3 1 G 53+0 Pi.! 
CONT I NU E 
O M 1  =OPN-ANUO 

PHI  O=Py-i] O/ . 1 7 4 5 3 2 9 3 E - 0 1  
OMEGA1 =OI?EGA I /. 1 7 4 5 3 2 9 3 E - 0 1  
014 I =OI.1 I / . 1 7 b  5 3 2 9 3  E-01 
A I I = A 1 1 / . 1 7 4 5 3 2 9 3 E - 0 1  
AN U O  1=ANUO 1/ . 1 7 4  5 3 2 9 3 E- 0 1 
A N U O L = A N U O L /  . 1 7 4 5  3 2  9 3  E-01 
D E L N U  0 =3  E L N U  0 / . 1 7  4 5 3 2 9 3 E- 0 1 
GO TO 2 4  

2 5  WRITE(6 ,114)  
K R I  TE (60106)X0,Y0,Z0,  XODT,Y33T, ZODT 

2 3 

C COrdVERT AlJGLES I r I  RAD I A X  TC D E G I ? E E S  FOR P Z l  ?.?TI FIG 

65 



1 I I II II 111111 11111 I IIIIIIIIIIIII 111111111111 I II I I 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 ~ ~ ~ ~ 1 1 . ~ 1 1 1 1 1 1 1 1  

A P P E N D I X  E 

LIP, I T E ( 6,12 1 
J=J+4 
GO TO 55 

C CHAE!GE TIi.'IES TO DII*IEI.ISlOi'lLESS QUAPGTITI ES 
200 IF(OPTION.LT.1.5)GO TO 201 

I F(OPTION.LT.2.5)GO TO 202 
GO TO 203 

202 C M l  N=GO. /TPER 
DTkI I =DTH I *Ct4 I N 
DTWF=DT\iF*CbiIfd 
D E LTW=D E LTI.I* CI4 

DTTF=DTTF*CiI I I1 

GO TO 201 

DTTI =DTT I *ct;i I r j  

DELTT=DELTT*Cbl 

N 

N 

203 CDAYS=86400./TPER 
DTijI =DTHI *CDAYS 
RTlliF=DTkJF*CDAYS 
9E LTI;J=D E LTI.I*CDAYS 
L)TTI=3TTl*CDkYS 
DTTF=DTTF*CDAYS 

I F (DTWF. GT. 0.0 )GO TO 204 
TESTTi!=, 0 0 0 ~ 0 0 ~  
GO TO 205 

204 TESTTI:/=. 5E-06*DTI-JF 
205 IF(DTTF.GT.O.O)GO TO 206 

DE LTT=DELTT*CDAY S 
201 CONTII~IUE 

TESTTT=.0000001 
GO TO 207 

206 TESTTT=.5E-OG*DTTF 
207 CONTINUE 

T\!FI,IDT=DTG.JF-l. 5*DE LT\;/-TESTTIJ 

RP.I LIIDN=AP,! UO L- 1.5 * D E LNU 0-  . 0 0 0 0 0 0 1 
TTF[?DT=DTTF -1.5*D E LTT- TESTTT 

DTL!FT=DTIIF-TESTT!J 
DTTFTzDTTF-TESTTT 
ANUO LT=AIIUO L- . 0000 0 0 1 
I F ( GU I D E-1 .5 13 9,4 3,43 

3 9  A~.IUO=At.IUOl 
40 DELTTT=DTTl 
41 DELTTlJ=RTI.II 

GO TC42 
4 3 A P J  U 0 =AiJU 0 1 
44 DELTTG.!=DT!!I 
45 DELTTT=DTTI 

42 CRIT=.5E-OG*DELTTT 
CR] RHO=l.OE-O6*AI 
COii f iCf !J,GUI DE, l S l G  

61 ETO=AAA(ET, PHI 0,GAirlilA) 
k!ITO=ETO-ET*(SIF!(ETO)) 
AI:I'i-F =AiilTO+ 6.28 3 18 5 3 * (DE LTTI+D E LTTM 1 

C CRIT I S  A VALUE USER TO TEST TkiE 1TERATlOrl SCLiEPlES F Z R  C G i i V E 2 G E E I C E  

GAi4I , lA=l .  0 
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C A L L  /lNOI~I(ET,/j.l’lTF, ETF) 
6 3  PKI F=AAA(-ET, ETF8GA;’li’lA) 

CPHlF=COS(P!-II F )  
S P H I F = S I N ( P H I F )  
R F = PT/ ( 1 . 0  + ET*C Pi4 I F 1 
P H I D T F = ( S 9 R T ( P T ) ) / ( R F s c 2 )  
RDTF=ET*SPHI F/SQRT(PT) 

65  E I O = A A A ( E I  ,ANUO,GAI.’iiIA) 
At . . l IO=E I O - E  I * ( S I  P.1 (E I O )  ) 
AM I I =Ai4 I O+ ( ( 6 . 2  8 31 85 3* D E  LTTbi 
C A L L  Al.lOibt(E I ~ A I J I  I I, E I I )  
ANU I = A A A ( - E  I 8 E 1 I , GAi.l!:lA) 

/ ( A  I **le 5 1 1 

6 7  
X I I =P I / ( l . O + E  I *COS ( M i U  I ) 1 
ANUDTI=SQRT(PI ) / ( X I  I**2)  
X I  DTI = E  I *S I r J ( A E I U  I ) /  (SQRT( P I  1) 

3 0 0  0 I PPI I =ARU I +Oi.l I 
C O I  P N I  = C O S ( O l  PNI 1 
S O I P N I = S I N ( O I  P H I )  
C C t 4 E G I  = C O S ( O l i E G A I  
SOI . lEG I =S I P I  (OI.1EGA I 1 
C I  I=COS(AI I )  
S I  I=SIN(AI  I )  
X I  I l = X  I I * ( C O ? \ E G  I *CO I PN I - C  I I *SOIlEG I *SO I Prl I 
X I I 2 =X I I * ( S O P I E G  I * CO I PN I + C I I *Cot  i E  G I * S C  I PN I 1 
X I  1 3 = ~ 1  I * ( S I  I*SOIPI1I 1 
SUB l= X I I 3 / ( X I I l * S  PI I I F - X I I 2 x C PH I F 1 
B I =ATAtJ(SUG11 
A S O L l  =ABS(SI 1 
I F ( A S O L I - 1 . 5 6 9 0 5 1 0 ) 3 0 6 8 3 0 5 8 3 0 5  

ISIG=48 
C A L L  SPACE 
L!RI TE( 5 , 1 5 0  1 
J = J + 2  
GO TO 1 0 2 8  

3 0 6  CONTI FJUE 
C DT FI = ( X I I 1 5: C Pi-; I F + X I I 2 * S P! i I F ) / X I I 
S DT 11 = ( X I I 1 * S PI E I F - X I I 2 * C PI-: I F 1 / ( X I I * COS ( G I 1 1 
DELTTH=ATAN2 (SDTI-I, CDTN) 
I F (SDTW. LT. 0 . 0 .  N J D .  CDTH. GT. 0 . 0  1 DELTTH=G.28 31S53+DE LTTfi 

C DETERillf1ATlOr.I OF DELTTH A R D  I O F  TRAI?SFER O2BIT 

3 0 5  CONTINUE 

I F (SDTtI. LT . 0 . 0 , AQID . CDTI-I. LT. 0 . 0  ) DELTTi1=6.28 3 13 5’3+3E LTTl I 
3 0 2  CONTI PIUE 

C COl1PUTATIOfl O F  PAZAGOLIC Tli’lZ 
Rf-102=Bl”dE\X1(RF0:Ci I ) 

I F ( D E LTTti . GT . 0 . I 7 4  5 E-0 4 .  C\PI D . D E  LTTi I. LT - 5 . 2  8 3 1 G 7 3 1 GrJ 
R H O l = A I . l l  I J l ( R F , X I  I )  

DEGDTti=DE LTTb:/. 1 7 4 5 3 2  93 E- 0 1  
I S I G = 4 7  
C A L L  SPACE 
J = J + l  
W R I  T E ( 6 , 1 6 0  )DEGDTi-l 
A = l .  0 
P= PT 

TO 3 0 E 
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THl=PH I F-DELTTH 
TH2=PH I F 
E=ET 
GO TO 200 

3 0 8  CONTI I4UE 
C=SQRT( R ~ ~ O l * * 2 + R E 0 2 * * 2 - 2 . 0 * ~ ! 1 @ 1 * ~ H 0 2 * C D T ~ ~ )  
S PS I = (R!iO1-RROP*CDTH ) / C  
CPS I =(RI102*SDTH)/C 
PSI=ATANP(SPSI # c P s  1 )  
I F ( S P S  I .  LT. 0.0 .At . lD.  CPS I LT. 0 . 0 )  PSI =fj. 2 S 3 1 2 5 3 + P S  I 

3 0 4  CONTI FIUE 
SA LP= (.RHO 2- RHO 1 1 / C 
I F(SALP.GE.1.O)GO TO 311 
ALPI-IA=ATAN(SaLP/SQi~T(l.  I!-SALP**2 1) 
G O  TO 3 1 2  

311 ALPHA=1.5707953 
3 1 2  COi.ITI NUE 

THP=ALPMA-PS I 
PP=R:-!O 1 f ( 1. a+ CO s ( I-;-! P 1 1 
TTHP=(Sli : (TKP/2.  ) ) / ( C O S ( f i l P / 2 . ) )  
TTHPDT=(S I i!( (THP+DELTTII)/Z. ) ) /  (C%35( (-fi iP+DI-:LTT!l)/2.))  
T P 1 = ( ( P P * * 1 . 5  1 * ( (TTI-1 P* * 3 1 / 6 . +TTi j P/ '2 . I  1 / G .2 8 3 18 5 3 
T?2= ( ( P P * * l .  5 ) * ( (TTkiPDT**3 )/G +TT;iP31;/2.) ) / 5 . 2  8 3 1 8  53  
DE LTTP=TP2-T P I  
Ti-iPtiAX=3.1415927-(,4LP!i.r\.+PS 1 )  
SUS12=DELTTP-DELTTT 
ASUS12=ABS(SUBl?) 
I F ( ASUa 12-c;? I T )  3 7837 8 3 8 

c I F  DELTTP EQUALS DELTTT,TI.!E 023 l - f  IS PA:7\A2OLIC 
37 E = l . C  

P=PP 
Tl-!l=TI.jP 
T!-!2=THl+DELTTH 

A=9 9.999 
GO TO 8 0 0  

C A I S  IIjFIFIITE, IS SET EQ'JAL TO 9 9 . 9 9 9  FOi? P?I!iTIr.iS PSRPOSES 

c I F  G-ELTTP IS GnEATEF! THF::.i !3ELTTT,T;IE I'jRP,IT IS !iY?E?S3LIC 
C I F  DELTTP I S  LESS THAI.:] DELTTT,TI-iE C 2 3 I T  I S  ELLIPTIC 

35 I F(DELTTP-DELTTT)kO0837, 600 
4 0 0 SUB 1 3 m 0  1-RH02 

ASUBl3=ABS (SUB13 1 
I F ( ASUB 13- C!? I !?!lo 5 0 0,5 0 0 8 1; 0 1 

C E L L 1  PTI  C LOOP Rli02 NOT EGUAL TO f t H O 1  
401 3ELTH=(3.1415927-2,*(THP+PSl))/Afi 

THI=TI?'P+DELTH 
4 0 2 TE 2 = TH 1 + D E LiTli  

REF F =THPi:!AX-TEl 
( W 0 2 - R H 0 1 )  / (l?I-!O1*COS (TH1) - RfiO 2*COS (TI-I2 ) ) 

IF(DIFF.LE.C.O)GO TO 4 0 5  
I F ( E . G E . 1 . O ) G O  TO 4 0 5  
P=RH01*(1.3+E*COS(TH1)) 
A=P/ (1.0-E**2 1 
GAMir4A=l 0 
E 1=AAA( E 4 TH18 GMY'IA 
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403 
404 

405 

408 

C 
500 

501 

503 
504 

512 

505 

502 

506 
507 

508 

514 

E2=AAA ( E , TH2 , GAi l i lA 1,  
DT=((A**1.5)*(E2-El-E*(SI~!(E2)-SIt~(El))))/6.2831~53 
SUSlS=DT-DELTTT 
ASUB14=ABS(SUB14) 
I F(ASUB14-CR1T)800,300,403 

TI4 1 =TH 1 + D E LTH 
GO TO 402 
DE LTH=DE LTH/ 2. 
IF(DELTH-.0000001)800,8000408 
TH 1=TH l- DE LTH 
GO TO 402 
ELLIPTIC LOOP RH02 EQUAL Ti) RIiOl 
DELTTC=(DELTTH*(RHO1**1.5))/G.2331853 
DELE=l.O/AH 
E=DELE 
SUB 1 5 =D E LTT C- DE LTTT 
IF(SUB15)502,501,501 
P = ~ i - i O l * ( l . O + E * ( C O S ( P S l ~ ~ )  
A=P/(l.O-E**2) 
Ttt 1=- 1.0 * PS I 
TH2=TN 1+ DELTTH 
GAIII1A=l. 0 
E 1=AAA ( E , THl ,  GAI 1t.lA 1 
D T = - ( ( A * * 1 . 5 ) * ( E l - E * S I ~ ~ ( E 1 ) ) ) / 3 . 1 4 ~ 5 9 2 7  
SUB 1 6=DT- D E LTTT 
ASUBlG=ABS(SUBlG) 
IF(ASUB16-CRIT)800,800,503 
IF(SUB16)504,800,505 
DELE=DELE/2. 
lf(DELE-.0000001)800~800~512 
E=E-DELE 
GO TO 501 
E=E+DELE 
GO TO 501 
P=RHO1*(1.G-E*(COS(PSI))) 
A=P/ (1.0-E**2) 
THls3.1415927-PS I 
TH 2 =TH 1+ DE LTTH 
GAi4f9A=1. 0 
E l=AAA ( E , Ti4 1, GAI4 IA 1 
Alill=El-E*(S ICt.<(El) 1 
DT=( (A**l. 5)*(3.1415927-ACll) )/3.1415927 
SUB17zDT-DELTTT 
ASUB17=ABS(SUBl7) 
IF(ASUB17-CRIT)800,8000506 
IF(SUB17)507,800,508 
E=E+DELE 
GO TO 502 
DELE=DELE/2. 
IF(DELE-.0000001~800,800,514 
E=E-DELE 
GO TO 502 

IF(SUB14)404,600,405 
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6 00 SUB 18 = R H O  1- RHO 2 
ASUB18=AGS(SlJB18) 
I F (ASUB18-CK i RHO )700,700,601 

C HYPERBOLIC LOOP RH02 FdOT EQUAL TO E l i 0 1  
6 0 1  DELTH=(THP+PSI ) /AH 
6 1 0  TIIl=THP-D E LTK 

CTH 1 =COS (TH1 j 
OPECTZ1 .O+E*CTIII 
IF(OPECT.GT.0.0)GO TO 602 

lF(DELTtl.GT.O.lE-08)GO TO 6 1 2  
609  DELTK=DELTW/2. 

J = J + 2  
E = (  - 1 . 0  ) / C O S  ( 3 E  LTTt-:/2.0 
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so9  

8 1 0  

8 I1 
8 1 2  

8 7 3  

9 0 0  

901 

1 0 0 1  

1 0 0 2  
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1 0 4  0 !JRI TE ( 6 , 1 3 4  1 DE LTTI:., PH I F, At1 ti I , E, A, B I , Tti I , !3 E LTT! !, E! !::I ! I :1 , D V 1 1 , 3 V :  2 ,  .??I 
11 3, i)V2 1, DV2 2 , DV2 3, DE L V 1 ,  D €  LV2 , DE LV 

G O  TO 1031 
1 0 3 2  IF(OPTIOI1.GT.1.5)GO TO 1 0 4 1  

I.-I R I T E ( 6,12 2 1 i3 E L TTb!, PI-! I F , Ai.1 U I , E, A , S I , T! !.I , 9 E LTTl I ,  R 1 ! 5: i I r i , 3  V 1 1 , D V  1 2 2 V 

G O  TO 1 0 3 1  
1 1.3 , D V 2 1, DV 2 2,D V 2 3 , 0 E LV 1, E E L V  2 ,  D E LV 

1 0  4 3. 1 T E ( 5,13 6 13 E LTTII , P!-! I F, A!! LI.1 , E , I;, I: I , TF! I , 2E LTT!.! , i!f :i'i i I I!, 3V 11 , D V  7.2 , 3V 
11 3, D'J2 18 2 # nv2  3, 9 E Lv1, i) E Lv2 # 3 E L'! 

G O  TO 1 0 3 1  - ._ 

1 0 3 0  I F(K.GT.1)GO TO 1 0 3 3  
I F(OPTIOM.GT.1.5jGO TO 1 0 k 2  
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GO TO lOGl 
1060 \IRlTE(6,1401CDTT 
1061 J=J+3 

GG TO 41 

lF(DELTTT-DTTFT)lO1OOIOllOIOll 
1010 DELTTT=DTTF 

I.! 0 = 0 
r.10 1 =2 
I S I G = 4 2  
CALL SPACE 
\ERITE(G,1241 
CALL COtJVRT ( DE LTTT, CDTT, 0 PT I Ob!, TPEil 1 
IF(OPTIOIi.GT.1.5)GO TO 1062 
\jRITE(G013O1CDTT 
GO TO 1063 

10 62 I.JR I TE ( 6 , 140 1 CDTT 
1063 J=J+3 

GO T3 41 

1009 ~F(~~.GT,~)GO TC io11 

1011 I F(AMUO-AE:LI. .2Drl)l012, IG13,1013 
10 12 AN U 0 =AN U 0 + D EL NU 0 

N O = O  
PJ01=0 

I s I G=47 
CALL SPACE 
L,;R I TE ( G , 12 4 1 
ANU O=ANU 0 / . 1 7 4 5 3 2 9 3 E - 0 1 
i l R  I TE ( 6, I32 1 A P l U O  
C A L  L CO NVRT ( DTT I , CDTT I , 0 PT I Old , T PE R 1 

W R I TE ( 6 , 13 0 1 C DTT I 

r502=0 

I F ( 0 PT I 0 Pi. GT 1 e 5 ) G 0 TO .lo 6 4 

GO TO 1065 
10 6 4 LJ 2 I T E ( 6 , 1 4 0 1 C D TT I 
1065 ANUO=ANUO*. 17453293E-01 

J=J+3 
GO TO 4 0  

1013 IF(N02.GT.l)GO TO 12 
I F(ANUO-ANUOLT)1014~12~ 12 
/?NU 0 =ANU 0 L 
N O  =O 
NOl=O 
N02=2 
ISlG=47 
CALL SPACE 
1JR I TE ( 6,124 1 

10 14 

ANU 0 =A It] U 0 / .17 4 5 3 2 9 3 E-0 1 
kf R I TE ( 6,13 2 1 AN U 0 
CALL COFJVRT ( DTT I , CDTT I , 0 PT I 0 ? I ,  T P El: 1 
I F(OPTION.GT.1.5)GO TG 1C66 

PI R I T E ( G , 1 3 0 1 CB TT I 
GO TO 1067 

1066 I I R I  TE(G,140 1CDTTI 
1067 ANUO=ANUO*. 17453293E-01 
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J=J+3  
G O  TO [IO 

1 0 1 5  I F(DELTTT-TTFiIDT) 1016,1017,1017 
1016 DELTTT=DELTTT+gELTT 

N 0 = 0 
GO TO 4 2  

IF(DELTTT-DTTFT)1012810~~81C19 

1.1 0 = 2 
GO TO 4 2  

1 0 1 7  IF(tlO.GT.1)GO TO 1029 

1018 DELTTT=DTTF 

1 0 1 9  I F(DELTTI .~ -T!J~! . I3T) lO2O, lO21 ,1021  
1 0 2 0  DELTT\,I=DELTT\J+D ELTU 

H O = O  
1:01=0 
I S I  G = 4 8  
CALL SPACE 
L!RI TE( 6 , 1 2 4  1 
CALL CQllVRT (CE LTT'II, CDTL:, OPT I c)fI , T ? E 2  1 
I F (OPT IOil.GT. 1.5 )GO YO 1080 
!IRITE(G,128)CDT!.: 
GO TO 1081 

1 C 8 0 !,J R I T E ( G , 13 8 1 CDT!I' 
1081 J = J + 2  

GO TO 4 5  
1021 IF(NO1.GT.1)GG TO 1023 

I F(DELTTII-DT1.IFT11022,1023,1023 
1 0 2 2 D E L 7 TkJ= D T\ i F 

NG=O 
I.! 0 1 = 2 
I S  I G=42 
CALL S P A C E  
?fR I TE ( 5,12 4 1 
C A L L CO i 'iV RT ( D E LTT;'! , CD Ti!, C PT I C i! , TP Z I: I 
IF(OPTIOfI.GT.1.5)GO TO 1082 
\lRITE(G,128)CDT:j 
GO TO 1053 

108 2 !I2 I TE ( G, I 3  8 1 CDTii 
1083 J = J + 2  

GO TO 45 
1 0 2 3  I F(i:i:i10-Ai..lLi'iD11)1024,1c25,1025 
10 2 4 At: U 0 =Ahl U 0-i. DE LPjU 0 

EJO=O 
1.101=0 

I s I G=47 
CALL SPACE 
\JJR I T E ( 6 1 2  4 
A N  U 0 =AI.,] U O/ .17 4 5 3 2 9 3 E- 0 1 
W R I TE ( G,13 2 1 AElU 0 
CALL 
I F(OPTION.GT.1.5)GC TO 1024 
I.1 R 1 TE C 6 e 1 2  8 ) C5 T!i I 

ri02=0 

CONVRT ( DT1.i I , C DT!d I 0 PT I 0 1.1, TP E 8 1 
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G O  TO 1 0 8 5  
1 0 8 4  W R I  TE(6,138)CDTklI 
1 0 8 5  ANUO=ANUO*.17453293E-01 

J=J+3 
GO TO rib 

1 0 2 5  IF(N02.GT. l )GO TO 1 2  
I F ( ANUQ-ANUO LT 1 1 0 2  6 , 1 2  , 1 2  

1 0 2 6  ANUO=AI. IUOL 
NO=O 
N01-0 
N02=2 
I SI G=47 
C A L L  SPACE 
WRlTE(6 ,124)  
A N U O = A N U O / .  l 7 4 5 3 2 9 3 E - 0 1  
WRITE(6,132)ANUO 
C A L L  CONVRT(DTWI ,CDTkJI ,OPTIOM,TPER) 
IF(OPTIO~~l .GT.1 .5)GO TO 1 0 8 6  

W R LTE ( 6 , 1 2  8 1 CDTlJ I 
GO TO 1 0 8 7  

1 0 8 6  WRI T E ( B , 1 3 8  )CDTb!l 
1 0  8 7 ATJUO = A N U O  * -2.7 4 5 3 2 9 3 E-0 1 

J=J+3 
G O  TO 4 4  

1 2  WRITE(6 ,104)  
G O  TO 1 0  

1 0 0  FORMAT(4E18.8) 
1 0 2  FORC1AT(//4X42HVELOC I TY I NCREt.'IEI.!T REQU I RED FOR REND~ZVOUSlX37HSETliE 

1 E N  TWO ARB I TRARY E L L  I PT I C 023 I T S / / )  
1 0  4 FORMAT ( 1H 1 1 

1 0 8  FORMAT(lZX2METlGX2HE I16X2tlAI 12XSilGI.lEGAI 15X3f-0,f-lI 16X2tiI  I ) 
1 0 6  FORMAT(7E18.6) 

1 1 0 
1 1 2  FORfIAT(lOX4H!ITTI 14X4tiDTTF14X4HPTl.iI l11.X4H3TllF32Y,4HP,~II N17XlHII) 
11 4 FO RIilAT ( 1 2  X2fl X O  16X 2 HY 0 1 6  X 21-! Z 0 1 4  X k  i i X  0 DT14 X4H Y ODTl4X 4 t ! Z  0 3T  ) 
1 1 6  

F 0 R11AT ( 1 0 S 4 k! PFI I 0 1 4 X 4 tl El U 0 1 1 4  >! I; 1-1 i.1 U 0 L 1 6 X 2 HM U 1 6 X 2 EAT 1 4 X 4 I! T P E 2 1 5 X 3 H V CT ) 

FORMAT(lXSMDELTTW3X4t~PH I F4:!3I!P!UI 6XlHEEX1I-IA6Xlt-i I5X31iTE I IXGHDELTTljlX 
1 4K RH 0f.d 4 X 4 tl DV 1 X4 X 4 1-i DV 1 Y  4 X 4 I-I D V 1 Z 4 X 4 E D V 2 X 4 X 4 t I 3 V  2 Y I: X 4 E DV2 Z 2 X 5 ;I DE L V  1 2 X 
2 5HDE LV2 3X 4llD E L V /  / 1 

141-1 R t i OM 4 X 4 i i D V  1 X 4 X 4.1-1 D V 1 Y  4X 1: H D V  1 Z 4 X 43 D'J 2 X 4 X 41-1 D V2 Y k X 4 ti E\/ 2 Z 2 X 5 i 1 D E  L V  1 2  .I< 
2 5 1-1 D E LV 2 3 X 4 6 D E L V/  / ) 

118 FOi?i4AT(lX61-1DELTTT3X4t..lPH I F4X3tiliUI 6X1I-iE6Xll-~A6Xlii I 5X'Ci?TE I lXGti3ELTTtllX 

1 2 0  FORBIAT(F7.4,2F7.2,F7.4, F7.3,  F7 .2 ,  F8 2 0  F7 .2 ,  F5 .2 ,  SFD . 5 , 3 F 7 . k / / >  
1 2 2  FORbMT(F7.4,2F7.2, F7 .k ,F7 .3 ,F7 .2 ,FZ .  2, F 7 . Z 8 F 5 .  2 ,6FE .  5 , 3 F 7 .  4, l i t * / / )  
1 2 4  FORMAT(lX//) 
1 2 6  FORMAT(4E18.S,E36.8,El8.8) 
1 2  8 IF ORPlAT ( 1 X  81-13 E LTTI.I= F 7 . 4  1 
1 3 0  FOt?bIAT(lXSHDELTTT= F 7 . 4 )  
1 3 2  FOI?MAT(~X~H~~UO= F 7 . 2 )  
1 3 4  FORMAT( F 7 .1 ,ZF 7 .2 ,  F7 .4  , F 7 .3 ,  F7.2 , F E. 2 , F7 .2  , F 5 . 2 ,  GF2.5,3F 7 . 4 /  / 1 
1 3 6  FORHAT(F7. l 8 2 F 7 .  2 ,F7 .  48 F7.3 ,  F7 .2 ,  F 8 . 2 ,  F 7 . 2 ,  F5.2, 6 F 2 . 5 , 3 F 7 .  !: 0 1 H * / /  1 

1 4 0  FORfIAT(IX8l-IDELTTT= F 7 . 1 )  
1 4 4  FOR!MT(6>!20HAI IS LESS TI?AN Z E R O / / )  

. a  38. sQgfi.J&Fx lak# E LTTW= F 3 1.). 

1 4 8  FO RImIAT ( 1 O X  4H PI-! I 0 1 6  X 2 t-I E T 1 6  X 2 1-l I 1U 1 6  X 2 HAT 14 X 4.k! T? E 21 5 X 3 l!V CT 1 
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APPENDIX E 

C 

1 5 0  FORMAT(CX41HI EQUAL + / - g o  DEGREES NOT ACCEPTABLE D A T A / / )  
1 6 0  FORMAT(lOX19HDELTA THETA EQUALS F6.1,1X39HDEGREES, DCi PJOT COPJS I DE 

1 R  UNLESS ORB I T S l X 2 5 H I  NTERSECT, I N K H I  CI-1 CASE, 1 
1 6 2  FORMAT(GX48HDTTI INPUT EITHER AS ZERO 0 2  A NEGATIVE QUANTITYlX23MB 

1UT EQUATED TO DELTT ( F10.4,1X33H) 3Y PRCGRAI4. REC0::SI DER I IIPGT. 
2 / /  1 

1 6 4  FORMAT(lOX20HTHIS CASE (DELTTkI = FIC.4,1X371+1 IS A L I M I T l r , I G  !fYPEi?B 
l O L I  C ORBIT I.lITf.-l1_?:lbl.IE APPROACHING F 1 0 . 5 / / )  

16G FORMAT(lOX20HTHIS CASE (DELTTT = F10.4,1X37H) I S  A L l h l i T I P I G  I.:YPERB 
l O L l C  ORBIT W I T H l X l 4 l i E  APPROACHING F I 0 . 5 / / )  

END 

F U FI CT I 0 N 
GAMMA EQU/?L 1,EXCEPT FOR HYPERGOLIC ORBITS LItlEr.4 I T  IS -1 
PIMUM=3.1415927 
BETA2=BETA/2.0 
ABETAP=ABS(BETA2) 
SBETA2=S I N(BETA2 1 

AAA ( A L PH Pi 8 B ET A 8 GI?./ i t  1 A 1 

I F ( S B E T A 2 . G T . O . O . A N D . ~ B E T ~ 2 . G T . l ~ 5 7 0 7 7 S 9 ~ 7 0 ~ ~ 3 7 I ~  

I F ~ S B E T A 2 . L T . O . O . A N D . A B E T A 2 . G T . l . 5 7 0 7 7 8 9 . A ~ ~ l ~ . A ~ E T ~ 2 . L T . l . 5 7 0 ~ 1 3 7 ~ ~  
10 TO 1 

10 TO 2 
SUB 1= ( SQRT (GAMMA* ( 1.0-A L PHA ) / ( 1.0 +ALPHA 1 1 ) * (S B ETA2/ (COS ( B ETA2 1 1 I 
A PR= 2 . * ATAN ( S UB 1 1 
GO TO 3 

1 APR=3.1415927 
GO TO 3 

2 APR=-3.1415927 
3 N = ( B E T A + P I N U M 1 / ( 2 . * P I PI U 1 1 1 

AN =N 
AAA=APR+2. *AN*PI NUM 
RETURN 
END 

SUBROUT I NE 
Y l l = H l l * S l + H 1 2 * S 2  
Yl2=JG!uS-l~~2ikS2 
Y13=H31*S l+H32*S2 
RETURN 
END 

VELOC(Y11, Y12, Y13, Hl l ,H12,  H21, H22 8 H31, E 3 2  S1,S2 I 
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APPENDIX E 

SUBKOUTI i:E S I  ; ~ ( ! ~ 1 1 ~ ~ ! 1 2 ~ ! ~ 2 1 ~ ! ! 2 Z ~ ~ ~ 3 1 , I ~ 3 2 ~  G1,u2# 33 
CUl=COS (UI 1 
s u l = S I : ! ( u 1 )  
c u 2 = c o s  ( U 2  1 
SU2=SI  Pl(U2) 
CU3=COS(U3) 
s u 3 = s  I N(U3) 
I ; I1=CU1*CU2-CU3*SU2xSUl  
~ i l 2 = - S U l * C U 2 - C U 3 * S U 2 * C U l  
b12 1 = cu 1 * s u 2  s c u 3  9:CU2 *su 1 
:J22=-SU1*SU2+CU3*CU2*Cu~ 
I i 2 ?. =S U 3 *S U 1 
1132=SU3*CUl 
RETURtl 
EI!D 

SUBROUT I f lE ANGIl( ECCEN, AI4AI!O!1, EAN01-1) 

E =E C C EN 
EA0 =GA RI4+ E * S  I PI ( BAR: 1 ) + .5 * E * * 2 aS I N ( 2 . *E .ARP’l) 
EA= EA0 

B ARM =At I AN 0 bl 

1 6  ALIA=EA-E*SI t l (EA)  
DELflA=BARI.,I-AI!A 
D E  LEA=DELMA/ (1. -E*COS ( E A )  ) 
EA1= EA+ DE LEA 
ADELEA=ABS(DELEA) 
COr:TST= ( E A l -  EA) / E A 1  

I F (ACT-. 1 E - 0 6 )  17,15,15 
1 5  EA=EAl  

GO TO 1 6  
1 7  EAPiOiI=EA 

RETURN 
END 

ACT=AES(CONTST) 

SUBROUTINE SPACE 

I F ( I S I G - J ) 1 O 0 1 O 0 1 1  
COCIMON J,GUIDE, I S I G  

10 W R I  TE(GO 1 0 1 )  
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APPENDIX E 

C 
C 

S U B P, 0 U T I f 1 E C 0 r j  V RT ( T I i:l E ,  CT I t i E , 0 P T i 0 P I  , T ?E !? 1 
TO C O N V E R T  TI  H E  FRO?.! D I i lENS I OI.!LESS QUA\riT I TI ES TO U r i  ITS  

IF(OPTION.LT.1.5)GQ T O  1 
IF(OPTION.LT.2.5)GO TO 2 
CTI iiE=T IiiE*TPEE/8GhOO. 
RETU RT! 

CORRESPOr!D I I.!G TO I IJPUT 

1 CTli'!E=TI LIE 

2 CTI IlE=TI:.1E*T?E2/60. 
RET U REI 

RETURI: 
E N D  

79 



REFERENCES 

1. Battin, Richard H. : The Determination of Round-Trip Planetary Reconnaissance 
Trajectories. J. Aero Space Sci., vol. 26, no. 9, Sept. 1959, pp. 545-567. 

2. Breakwell, John V.; Gillespie, Rollin W.; and Ross, Stanley: Researches in Inter- 
planetary Transfer. p r e p r i n d  954-59, Am. Rocket Soc., Nov. 1959. 

3. Lascody, D. N.: Analytical Determination of Three Dimensional Interplanetary Trans- 
fers. Proceedings XIIIth International Astronautical Congress (Varna), vol. 11, 
N. Boneff and I. Hersey, eds., Springer-Verlag, 1964, pp. 571-594. 

4.  Anon.: Planetary Flight Handbook. Part 1 - Speed Contours and Auxiliary Graphs 
for Manned Missions to Mars  and Venus. NASA SP-35, Pt. 1, 1963. 

5. Danby, J. M. A,: Fundamentals of Celestial Mechanics. The MacMillan Co., c.1962. 

6. Anon.: The American Ephemeris and Nautical Almanac for the Year 1964. Nautical 
Almanac Office, U.S. Naval Observatory, 1962. 

7. Clohessy, W. H.; and Wiltshire, R. S.: Terminal Guidance System for Satellite Ren- 
dezvous. Jour. Aerospace Sci., vol. 27, no. 9, Sept. 1960, pp. 653-658, 674. 

8 .  Anthony, Maurice L.; and Sasaki, Frank T.: The Rendezvous Problem for Nearly 
Circular Orbits. Paper No. 65-32, Am. Inst. Aeron. Astronaut., Jan. 1965. 

9. Brouwer, Dirk; and Clemence, Gerald M.: Methods of Celestial Mechanics. Academic 
Press, Inc., 1961. 

10. Dziobek, Otto: Mathematical Theories of Planetary Motions, Dover Publ., Inc., 1962. 

80 



TABLE I 
COMPUTER PRINTOUT OF EXAMPLE 1 

VELOCITY INCREMENT REQUIREU F O R  RENDEZVOUS H E T H E E N  THO ARBITRARY ELLIPTIC O R B I T S  

E T  E1 A I  OMEGA1 UMI I1 
0.93371999E-C1 C'.16724200€-01 0.65630100E 0 0  0.25387999E 0 3  0.23361999E 0 3  0.18499999E 01 

PHI0 NU0 1 NUOL MU AT TPER VCT 

DTTI DTTF O T W  I OTWF R M I N  H 
0.32439999E 0 3  0.37COOOCCE-00 0.370CC9OOE-03 0.46789999E 2 2  Q.74736999E 12 0.59348101E 08 0.79124083E 0 5  

C.16000CCCE C3 0.2600COOOE 03 0 .  0.400CC000E 3 2  0 . 3 9 3 7 8 i o o ~ - o o  0 . 3 0 0 o o o n o ~  0 1  

NUO- 0.37 
DELTTW= C .  
OELTTT P H I F  NU1 E A I THI OELTTH RHOM OVlX O V l Y  D V l Z  DV2X O V Z Y  OV2Z DELVl DELV2 DELV 

16C.O 423.41 C.37 0.6758 3.627 1.65 -134.33  296.14 0.20 0.78032-0.44667 3.03413-0.51167-0.05421 0.01771 0.8998 0.5148 1.4146* 

18C.O 434.75 3.37 C.6661 0 - 5 9 6  1.87 -136.86 307.48 0.20 0.76728-0.40968 0.02693-0.44464 0.01959 0.01944 0.8702 0.4455 1.3157* 

200.0 445.71 0.37 0 - 6 8 8 3  2.583 2.24 -139.61  318.43 0.18 0.80293-0.40036 0.01994-0.44264 0.10123 0.02198 0.8974 0.4546 1.3520* 

22O.C 456.29 9 - 3 7  3.7463 3.581 2.88 -143.67 329.CO C.15 0.90147-0.40946 0.01285-0.51051 0.17498 0.02549 0.9902 0.5403 1.5305* 

240.C 466.52 0.37 C.8392 0.586 4.19 -150.66 339.22 0.09 1.C8507-0.41653 0.00574-0.65745 0.21178 0.02985 1.1623 0 .6914 1.8537* 

26C.O 476.43 0.37 0.9427 0.598 7.86 -162.05 349.07 0.03 1.36525-0.37671-0.00035-0.87692 0.15690 0.03412 1.4163 0.8915 2.3078* 

DELTTW= 2C.C 
160.0 434.75 25.74 0.6640 0.668 1.R6 -129.46 287.10 C.22 0.87931-0.192b2 3.02853-0.46880-0.20692 0.02048 0.9006 0.5128 1.4135* 

180.0 445.71 2C.74 0.6432 0.630 2.01 -131.76 298.C6 0.22 C.84048-0.16181 0.02048-0.40512-0.12722 0.@2168 0.8562 0.4252 l .2813* 

200.0 456.29 20.74 6.6486 0.612 2.27 -134.02 3G8.63 0.22 C.84514-0.14257 O.C1297-0.39640-0.@5278 0.02360 0.8572 0.4006 1.2578* 

220.0 466.52 2C.74 C.6817 0.696 2.70 -136.99 318.86 0.19 0.89663-0.12717 O.CO561-0.43889 0.00647 0.02635 0.9056 0.4397 1.3453* 

240.C 476.43 2C,.74 0.7448 C.607 3.43 -141.31 328.75 0.16 1~0035i)~C~10339-0~00183~0~53243 0.03607 0.03004 1.0088 0.5345 1.5433* 

26C.O 486.05 25.74 0.8348 0.614 4.82 -148.51 338.34 0.10 1.17529-0.04870-0.C0926-0.67511 0.01106 0.03454 1.1763 0 .6761 1.8524* 

OELTTH= 4C.C 
160.0 445.71 41.03 0.6567 5.716 1.86 -124.49 277.77 0.25 0 .89817 0.07952 3.02058-0.39029-0.341133 0.02106 0.9019 0.5187 1.4266* 

OELTTT PHIF NU1 E A I T H I  DELTTH R H O M  D V l X  D V l Y  O V l Z  DV2X DV2Y DVZZ DELVl DELVZ DELV 

180.0 456.29  41.03 0.6258 0.668 1.94 -126.59 288.35 C.25 0.83996 0.09298 0.01247-0.33246-0.25209 0.02159 0.8452 0.4178 1.2630* 

2OC.C 466.52 41.03 C.6178 3.645 2 - 1 9  -128.52 298.57 0.25 G.81985 0.10684 0.00515-0.32083-0.17773 0.02273 0.8268 0.3675 1.1943* 

22C.5 476.43 41.C3 0.6321 0.634 2.36 -130.68 358.47 C.23 0.83549 0.126CO-0.00178-0.34789-0.12324 0.02455 0.8449 0.3699 1.2148* 

24C.C 486.05 41.03 C.6699 0.632 2.76 -133.65 316.0A 0.21 0.88813 0.15766-0.60864-0.40926-0.09563 0.02712 0.9021 0.4212 1.3232. 
& 
w 260.6 495.41 41.33 Z.7325 C.635 3.43 -138.19 327.43 0.17 0.98113 C-21375-CeC1563-0.50157-0.10622 0.93056 1.0043 0.5136 1.5179* 



TABLE II 
COMPUTER PRINTOUT OF EXAMPLE 2 

____ 
VELOCITY INCREMENT REQUIRED FOR KENOEZVUUS BETHEElv TWO ARBITHAHY ELL IPT IC  U H B I T S  

E T  

PHI 0 

D T T  I 

X T? 

0.2340000W-01 

0 .  

C.ZOCOGOZOE CZ 

-0.16920000E-C1 

E1 A I  

NU0 1 NUOL 

OTTF D T r I  

Y O  LO 

O . L Y O ~ ~ ~ O ~ E - O O  0 . 1 3 5 4 3 8 7 8 ~  01 

C.48625083E-00 0.48625083E-00 

C.4CCOOOCOE 02 0. 

0.3759999 9E-0 1 0 .  

OMEGA1 OM 1 I I  
0. 0.17574345E 0 1  0. 

0.14080000E 17 0.224800GOE 08 0.56438179E 0 4  0.25026675E 05 
MU AT TPEH VCT 

DTWF R M I N  H 

X O D T  YODT ZODT 
0.30000000€ 02 0.95400004E 00 0.30000000E 01 

-0.37599999E-02 0.15260000E-00 0. 

NUU= 0.49 
DELTTT= 20.0 
UELTTb PHlF NU1 E A I T H I  DtLTTH KHOM DVlX DVlY O V l Z  DVZX UVZY DV2Z DELV l  DELV2 DELV 

0. 79.17 0.49 0.C499 0.948 0. 107.97 76.93 0.96 0.05227-0.14489 0. -0.02179 0.C3203 0. 0.1540 0.0387 0.1928 

10.0 117.22 44.59 C.0735 C.964 0. 155.04 70.87 1.01-0.01005-0.20010 0. -0.05237 0.05712 0. 0.2004 0.0775 0.2779 

20.0 154.27 dC.01 C.1979 1.271 0. 280.13 72.50 1.02-0.05508-0.43009 0. 0.01498 0.10739 a. 0.4336 0.1084 0.5420 

30.0 190.85 1C6.69 0.6942 3.30C 0. 292.34 82.40 1.01 0.09842-0.74862 0. 0.08038 0.32180 0. 0.7551 0.3317 1.0867 

DELTTT= 30.0 
- 0.. 117.22 C.49 C.0379 C.974 e .  71.C9 114.98 0.96 0.0393C-C.13126 0. -0.02346 0.01591 0 .  0.1370 0.0283 0.1654 

10.0 154.27 44.59 0.0312 1.OC6 0 .  132.66 107.92 1.02-0.03276-0.19063 0. -0.03231 0.01876 0. 0.1934 0.0374 0.2308 

0.3966 0.0909 0.4875 

30.0 227.63 106.69 C.4355 1.713 0. 273.43 119.18 0.97 0.15056-0.60254-0. 0.01612 0.27834 0 .  0.6211 0.2788 F.8999 

20.0 19C.85 8C.01 @.150@ 1.197 0. 266.85 109.08 1.02-0.03019-0.39549 0. 0.02658 0.08689 0. 

DELTTT= 4C.C 
0. 154.27 0.49 0.0367 0 . ~ 8 7  0. 45.21 152.03 0.96 0.02890-0.12482 0. -0.02205 C.00286 0. 0.1281 0.0222 0.1504 

10.0 1Y0.85 4 4 - 5 9  C.6196 1.019 C. 113.84 144.49 1.ti2-0.04107-0.18982 0. -0.01610 0.00656 0. 0.1942 0.0174 0.2116 

0.3635 0.0954 0.4589 20.0 227.63 8C.Gl 0.1204 1.137 0. 245.09 145.86 1.00-0.00549-0.36346-0. 0.00835 0.09499 0. 
- .  

U E L ~ T ~  PHIF NUI E A I THI OELTTH RHO+! O V l X  D V l Y  DVlZ DVZX OV2Y OVZZ OELVl DELV2 DELV 

35.C 265.23 106.69 C.3124 1.344 0. 250.68 156.78 0.92 0.17237-0.48852-0, -0.08178 0.24000 0. 0.5180 0.2535 0.7716* 



TABLE III 
COMPUTER PRINTOUT OF EXAMPLE 3 

le. I r T  E 1  AI OMEGA I ilki I I 1  
U . ~ S U U L ~ J O ~  U b  3 . 2 u l i O b 3 3 U t - 3 U  b.90~00350i 00 0 - 9 0 3 0 3 3 0 0 t  02  -3 .Y30U3300E 02 0.30003000E 0 2  

I\J I t 

0 .  

0. 

0 .  

0. 

li. 

0 .  

u. 

U. 

d .  

U. 

U. 

G. 

6. 

0 .  

u. 

J . 9 3 3 1  

0.8784 

u. a311 

d .  7897 

U.7531 

u .7L i5  

6.0912 

5.6047 

3.6407 

U.bld8 

r). 59.57 

c. 5 8 0 2  

3.5132 

N J G L  MU A T  TPER VCT 

d r r i i  UTWF RMIN H 
0.34303303t 03  0.59999999E 0 1  5.3999Y999k 01  0.62831853E 0 1  0.09999999E 01 

01 G .  0. 0.45000COOE-00 0.30000000E 0 1  

A I I d 1  U E L T T H  KHOM D V l X  u V l Y  O V 1 . l  3 V 2 X  DV2Y DV2Z DELVl DELV2 OELV 

3 -3o.uti 

4 -30.00 

Y.+75 -30.11 

5.260 -30.36 

3.018 -30.73 

3.390 -31.1'9 

2.621 -31.13 

2.358 -32.34 

2.148 -33.51 

1 .YYO -33.74 

l.oU8 -34.51 

1.770 -35.34 

1.090 -36.20 

1 . 0 2 4  -37.11 

1.506 -38.07 

-42. tld 86.14 0.02-0.52733 0 .Ldj24)3.37539 0.15390-0.08548-0.78742 0.7066 0.8069 1.5134 

-42.08 Y0.60 0. S3-0- 52175 0 -2bh5XS.LY045 0.1380 5-0.08853- 0.74180 0.6528 0.7597 1.4125 

-71 .L7 94-69  0.63-C.51804 O.L44+6)(G. 21509 0.1Z5Z+O.09C78-0.7@540 0.6119 0.7222 1.3340 

-40.47 93.44 0.64-0.51571 0.22~00)0.14709 0.11451-0.09247-0.67604 0.5818 0.6919 1.2737 

-39.55 101 - 9 1  0.64-0.51449 0.20699%J. 084d7 0.10529-0.09385-0.65216 0.5610 0 -6672 1.2283 

- 3 8 . 8 1  105.11 0.05-0.51415 O.lad56$.j  -02725 0.09715-0.09508-0.63265 0.5483 0.6471 1.1954 

-37 .35  10d.08 0.65-C.51458 0.17OLu-L. 02664 0.08962-9.09633-0.61667 0.5427'0 -6306 1.1732 

-37.37 110.83 C.06-0.515b6 0.1513j.J .0774Y 0.08308-0.09769-0.60359 0.5431 0.6171 1.1602 

-36.17 113.41 0.6-6-0.51732 0.13335.-L'-125dI 0.07681-0.09927-0.59294 0.5488 0.6061 1.1549 

-35.24 115.81 0.07-0.51949 0.11457--3.17203 0.07089-0.10113-0.58433 0.5591 0.5972 1.1564 

- 3 4 . 2  d 118.56 C .67-C. 522 13 0.0957 1-0.21048 J .0652 8-O.lC1333-0.57746 0.5733 0 -5903 1.1635 

-33.31 120.17 0.17-0.52519 0.67030-0.L5944 0.05990-0.10592-0.57209 0.5907 0.5849 1.1756 

-32.33 122.16 0.68-0.52864 0.05000-.0 - 301 1 4  0.05474-0.10893-0.56803 0 - 6 1  10 0.5810 1.1920 

-3 1 .2 I 12.t .04 0.68-0.53244 0.036L83.34175 0.04976-0.11238--0~56511 0.6337 0.5783 1.2120 

-30.22 125.81 0.6.3-0.53655 0.01534-.C.38143 0.05496-0.1163PO.56321 0.6585 0.5768 1.2353 
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